Vpu Antagonizes BST-2–Mediated Restriction of HIV-1 Release via β-TrCP and Endo-Lysosomal Trafficking
نویسندگان
چکیده
The interferon-induced transmembrane protein BST-2/CD317 (tetherin) restricts the release of diverse enveloped viruses from infected cells. The HIV-1 accessory protein Vpu antagonizes this restriction by an unknown mechanism that likely involves the down-regulation of BST-2 from the cell surface. Here, we show that the optimal removal of BST-2 from the plasma membrane by Vpu requires the cellular protein beta-TrCP, a substrate adaptor for a multi-subunit SCF E3 ubiquitin ligase complex and a known Vpu-interacting protein. beta-TrCP is also required for the optimal enhancement of virion-release by Vpu. Mutations in the DSGxxS beta-TrCP binding-motif of Vpu impair both the down-regulation of BST-2 and the enhancement of virion-release. Such mutations also confer dominant-negative activity, consistent with a model in which Vpu links BST-2 to beta-TrCP. Optimal down-regulation of BST-2 from the cell surface by Vpu also requires the endocytic clathrin adaptor AP-2, although the rate of endocytosis is not increased; these data suggest that Vpu induces post-endocytic membrane trafficking events whose net effect is the removal of BST-2 from the cell surface. In addition to its marked effect on cell-surface levels, Vpu modestly decreases the total cellular levels of BST-2. The decreases in cell-surface and intracellular BST-2 are inhibited by bafilomycin A1, an inhibitor of endosomal acidification; these data suggest that Vpu induces late endosomal targeting and partial degradation of BST-2 in lysosomes. The Vpu-mediated decrease in surface expression is associated with reduced co-localization of BST-2 and the virion protein Gag along the plasma membrane. Together, the data support a model in which Vpu co-opts the beta-TrCP/SCF E3 ubiquitin ligase complex to induce endosomal trafficking events that remove BST-2 from its site of action as a virion-tethering factor.
منابع مشابه
Antagonism of Tetherin Restriction of HIV-1 Release by Vpu Involves Binding and Sequestration of the Restriction Factor in a Perinuclear Compartment
The Vpu accessory protein promotes HIV-1 release by counteracting Tetherin/BST-2, an interferon-regulated restriction factor, which retains virions at the cell-surface. Recent reports proposed beta-TrCP-dependent proteasomal and/or endo-lysosomal degradation of Tetherin as potential mechanisms by which Vpu could down-regulate Tetherin cell-surface expression and antagonize this restriction. In ...
متن کاملSerine-threonine ubiquitination mediates downregulation of BST-2/tetherin and relief of restricted virion release by HIV-1 Vpu.
The HIV-1 protein Vpu counteracts the antiviral activity of the innate restriction factor BST-2/tetherin by a mechanism that partly depends on its interaction with β-TrCP, a substrate adaptor for an SCF (Skp-Cullin 1-F box) E3 ubiquitin ligase complex. This suggests that Vpu stimulates the ubiquitination of BST-2 and that this underlies the relief of restriction. Here, we show that Vpu stimulat...
متن کاملThe ESCRT-0 Component HRS is Required for HIV-1 Vpu-Mediated BST-2/Tetherin Down-Regulation
The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, a highly conserved set of four hetero-oligomeric protein complexes, is required for multivesicular body formation, sorting ubiquitinylated membrane proteins for lysosomal degradation, cytokinesis and the final stages of assembly of a number of enveloped viruses, including the human immunodeficiency viruses. Here, we show ...
متن کاملHIV-1 Vpu Blocks Recycling and Biosynthetic Transport of the Intrinsic Immunity Factor CD317/Tetherin To Overcome the Virion Release Restriction
UNLABELLED The intrinsic immunity factor CD317 (BST-2/HM1.24/tetherin) imposes a barrier to HIV-1 release at the cell surface that can be overcome by the viral protein Vpu. Expression of Vpu results in a reduction of CD317 surface levels; however, the mechanism of this Vpu activity and its contribution to the virological antagonism are incompletely understood. Here, we characterized the influen...
متن کاملA small molecule compound IMB-LA inhibits HIV-1 infection by preventing viral Vpu from antagonizing the host restriction factor BST-2
Human BST-2 inhibits HIV-1 replication by tethering nascent virions to the cell surface. HIV-1 codes Vpu that counteracts BST-2 by down-regulating this restriction factor from the cell surface. This important function makes Vpu a potential therapeutic target. Yet, no agents have been reported to block Vpu from antagonizing BST-2. In this study, we report a small molecule compound IMB-LA that ab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Pathogens
دوره 5 شماره
صفحات -
تاریخ انتشار 2009