Aptameric Recognition-Modulated Electroactivity of Poly(4-Styrenesolfonic Acid)-Doped Polyaniline Films for Single-Shot Detection of Tetrodotoxin

نویسندگان

  • Gertrude Fomo
  • Tesfaye Waryo
  • Christopher E. Sunday
  • Abd A. Baleg
  • Priscilla G. L. Baker
  • Emmanuel I. Iwuoha
چکیده

The work being reported is the first electrochemical sensor for tetrodotoxin (TTX). It was developed on a glassy carbon electrodes (C) that was modified with poly(4-styrenesolfonic acid)-doped polyaniline film (PANI/PSSA). An amine-end functionalized TTX-binding aptamer, 5'-NH₂-AAAAATTTCACACGGGTGCCTCGGCTGTCC-3' (NH₂-Apt), was grafted via covalent glutaraldehyde (glu) cross-linking. The resulting aptasensor (C//PANI⁺/PSSA-glu-NH2-Apt) was interrogated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in sodium acetate buffer (NaOAc, pH 4.8) before and after 30 min incubation in standard TTX solutions. Both CV and EIS results confirmed that the binding of the analyte to the immobilized aptamer modulated the electrochemical properties of the sensor: particularly the charge transfer resistance (Rct) of the PANI⁺/PSSA film, which served as a signal reporter. Based on the Rct calibration curve of the TTX aptasensor, the values of the dynamic linear range (DLR), sensitivity and limit of detection (LOD) of the sensor were determined to be 0.23-1.07 ng·mL(-1) TTX, 134.88 ± 11.42 Ω·ng·mL(-1) and 0.199 ng·mL(-1), respectively. Further studies are being planned to improve the DLR as well as to evaluate selectivity and matrix effects in real samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces

Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various...

متن کامل

Electrochemical quartz crystal microbalance study of covalent tethering of carboxylated thiol to polyaniline for electrocatalyzed oxidation of ascorbic acid in neutral aqueous solution.

The electrochemical quartz crystal microbalance (EQCM) was used to study the electrosyntheses and electrochemical properties of two kinds of polyaniline (PANI)-thiol composite films in aqueous solutions, which were prepared by covalent binding of a thiol to the oxidized forms of PANI (PANI(post)-thiol, protocol A), and electropolymerization of aniline in the presence of a thiol (PANI(poly)-thio...

متن کامل

Synthesis and Characterization of Electropolymerized Nanostructured Aminophenylporphyrin Films

Porphyrins substituted at meso positions with aminophenyl groups undergo oxidative electropolymerization in a process analogous to the formation of polyaniline. Porphyrins that successfully generate polymer films on the electrode include those tetrasubstituted with four p-aminophenyl groups, trisubstituted, or transdisubstituted, but not cis-disubstituted or monosubstituted. The polymerization ...

متن کامل

Electropolymerization of Thiophene with and without Aniline in Acetonitrile

The electrooxidation behaviors of thiophene and 3-methylthiophene on a Pt surface in acetonitrile/tetrabutylammonium tetrafluoroborate solution were investigated using cyclic voltammetry. The electropolymerization of these monomers and electrochemical properties of polythiophene and poly(3methylthiophene) were studied in neutral, acidic and basic media. Mechanisms related to the formation of po...

متن کامل

Electrochemistry of conductive polymers 36. pH dependence of polyaniline conductivities studied by current-sensing atomic force microscopy.

We demonstrate from our current-sensing atomic force microscopic studies that both electrical and topographical properties of electrochemically prepared polyaniline (PAn) films are affected by their preparation conditions. The electrical properties of the fully doped PAn films prepared in 0.30 M nitric acid with its pH and ionic strength adjusted to 0.50 can be described as a conductor with an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015