Gradient methods for minimizing composite functions
نویسنده
چکیده
In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum of two terms: one is smooth and given by a black-box oracle, and another is a simple general convex function with known structure. Despite the absence of good properties of the sum, such problems, both in convex and nonconvex cases, can be solved with efficiency typical for the first part of the objective. For convex problems of the above structure, we consider primal and dual variants of the gradient method (with convergence rate O ( 1 k ) ), and an accelerated multistep version with convergence rate O ( 1 k2 ) , where k is the iteration counter. For nonconvex problems with this structure, we prove convergence to a point from which there is no descent direction. In contrast, we show that for general nonsmooth, nonconvex problems, even resolving the question of whether a descent direction exists from a point is NP-hard. For all methods, we suggest some efficient “line search” procedures and show that the additional computational work necessary for estimating the unknown problem class parameters can only multiply the complexity of each iteration by a small constant factor. We present also the results of preliminary computational experiments, which confirm the superiority of the accelerated scheme.
منابع مشابه
Free Natural Frequency Analysis of an FG Composite Rectangular Plate Coupled with Fluid using Rayleigh–Ritz Method
This study investigates natural frequency analysis of an FG composite rectangular plate partially contacting with a bounded fluid. The material properties are assumed to be varying continuously through the thickness direction according to a simple power law distribution in terms of volume fraction of material constituents. Wet dynamic transverse displacements of the plate are approximated by a ...
متن کاملTight Complexity Bounds for Optimizing Composite Objectives
We provide tight upper and lower bounds on the complexity of minimizing the average of m convex functions using gradient and prox oracles of the component functions. We show a significant gap between the complexity of deterministic vs randomized optimization. For smooth functions, we show that accelerated gradient descent (AGD) and an accelerated variant of SVRG are optimal in the deterministic...
متن کاملAn Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization
We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achiev...
متن کاملAn Accelerated Randomized Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization
We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achiev...
متن کاملAn Accelerated Proximal Coordinate Gradient Method
We develop an accelerated randomized proximal coordinate gradient (APCG) method, for solving a broad class of composite convex optimization problems. In particular, our method achieves faster linear convergence rates for minimizing strongly convex functions than existing randomized proximal coordinate gradient methods. We show how to apply the APCG method to solve the dual of the regularized em...
متن کاملSeamless Image Stitching in the Gradient Domain
Image stitching is used to combine several individual images having some overlap into a composite image. The quality of image stitching is measured by the similarity of the stitched image to each of the input images, and by the visibility of the seam between the stitched images. In order to define and get the best possible stitching, we introduce several formal cost functions for the evaluation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 140 شماره
صفحات -
تاریخ انتشار 2013