Analysis of the N-terminal DNA binding domain of the IS30 transposase.

نویسندگان

  • Zita Nagy
  • Mónika Szabó
  • Michael Chandler
  • Ferenc Olasz
چکیده

IS30 is the founding member of a large family of widely spread bacterial insertion sequences with closely related transposases. The N-terminal end of the IS30 transposase had been shown to retain sequence-specific DNA binding activity and to protect the IS30 terminal inverted repeats. Structural predictions revealed the presence of a helix-helix-turn-helix motif (H-HTH2) which, in the case of IS30, is preceded by an additional helix-turn-helix motif (HTH1). Analysis of deletion and point mutants in this region revealed that both motifs are important for IS30 transposition. IS30 exhibits two types of insertion specificity preferring either a 24 bp palindromic hot-spot (GOHS) or sequences resembling its ends [left and right terminal inverted repeat (IRL and IRR)]. Results are presented suggesting that the HTH1 region is required for GOHS targeting and interferes with the inverted repeat (IR) targeting. On the other hand, H-HTH2 appears to be required for both. The binding activities of the mutant proteins to the terminal IS30 IRs as measured by gel retardation correlated well with these results. Furthermore, close inspection of the H-HTH2 region revealed significant amino acid identity with a similar predicted secondary structure carried by the transcriptional regulator FixJ of Sinorhizobium meliloti and involved in FixJ binding to its target sequence. This suggests that FixJ and IS30 transposase share similar sequence-specific DNA binding mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terminal inverted repeats of insertion sequence IS30 serve as targets for transposition.

In the present study, we demonstrate that the terminal inverted repeats of the Escherichia coli insertion sequence IS30 are functional target sites for the transposition of the (IS30)2 dimer, which represents an intermediate structure in the transposition of IS30. Comparative analysis of various target regions revealed that the left and right ends differ in their "attractivity." In our experime...

متن کامل

Immunogenic and Protective Potentials of Recombinant Receptor Binding Domain and a C-Terminal Fragment of Clostridium botulinum Neurotoxin Type E

Clostridium Botulinum Type E neurotoxin heavy chain consists of two domains: the translocation domain asthe N-terminal half and the binding domain as the Cterminal half (Hc). One effective way to neutralize botulinum neurotoxin is to inhibit binding of this toxin to neuromuscular synapses with antibodies against binding domain. Two synthetic genes, coding for Hc (the full length binding d...

متن کامل

Mutational analysis of the N-terminal DNA-binding domain of sleeping beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells.

The N-terminal domain of the Sleeping Beauty (SB) transposase mediates transposon DNA binding, subunit multimerization, and nuclear translocation in vertebrate cells. For this report, we studied the relative contributions of 95 different residues within this multifunctional domain by large-scale mutational analysis. We found that each of four amino acids (leucine 25, arginine 36, isoleucine 42,...

متن کامل

The helix-turn-helix motif of bacterial insertion sequence IS911 transposase is required for DNA binding.

The transposase of IS911, a member of the IS3 family of bacterial insertion sequences, is composed of a catalytic domain located at its C-terminal end and a DNA binding domain located at its N-terminal end. Analysis of the transposases of over 60 members of the IS3 family revealed the presence of a helix-turn-helix (HTH) motif within the N-terminal region. Alignment of these potential secondary...

متن کامل

DNA binding activities of the Caenorhabditis elegans Tc3 transposase.

Tc3 is a member of the Tc1/mariner family of transposable elements. All these elements have terminal inverted repeats, encode related transposases and insert exclusively into TA dinucleotides. We have studied the DNA binding properties of Tc3 transposase and found that an N-terminal domain of 65 amino acids binds specifically to two regions within the 462 bp Tc3 inverted repeat; one region is l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 54 2  شماره 

صفحات  -

تاریخ انتشار 2004