Engineering a chimeric pyrroloquinoline quinone glucose dehydrogenase: improvement of EDTA tolerance, thermal stability and substrate specificity.

نویسندگان

  • H Yoshida
  • K Kojima
  • A B Witarto
  • K Sode
چکیده

An engineered Escherichia coli PQQ glucose dehydrogenase (PQQGDH) with improved enzymatic characteristics was constructed by substituting and combining the gene-encoding protein regions responsible for EDTA tolerance, thermal stability and substrate specificity. The protein region responsible for complete EDTA tolerance in Acinetobacter calcoaceticus, which is recognized as the indicator of high stability in co-factor binding, was elucidated. The region is located between 32 and 59% from the N-terminus of A. calcoaceticus PQQGDH(A27 region) and also corresponds to the same position from 32 to 59% from the N-terminus in E. coli PQQGDH, though E. coli PQQGDH is EDTA sensitive. We previously reported that the C-terminal 3% region of A. calcoaceticus (A3 region) played an important role in the increase of thermal stability, and that His775Asn substitution in E. coli PQQGDH resulted in an increase in the substrate specificity of E. coli PQQGDH towards glucose. Based on these findings, chimeric and/or mutated PQQGDHs, E97A3 H775N, E32A27E41 H782N, E32A27E38A3 and E32A27E38A3 H782N were constructed to investigate the compatibility of two protein regions and one amino acid substitution. His775 substitution to Asn corresponded to His782 substitution to Asn (H782N) in chimeric enzymes harbouring the A27 region. Since all the chimeric PQQGDHs harbouring the A27 region were EDTA tolerant, the A27 region was found to be compatible with the other region and substituted amino acid responsible for the improvement of enzymatic properties. The contribution of the A3 region to thermal stability complemented the decrease in the thermal stability due to the His775 or His782 substitution to Asn. E32A27E38A3 H782N, which harbours all the above mentioned three regions, showed improved EDTA tolerance, thermal stability and substrate specificity. These results suggested a strategy for the construction of a semi-artificial enzyme by substituting and combining the gene-encoding protein regions responsible for the improvement of enzyme characteristics. The characteristics of constructed chimeric PQQGDH are discussed based on the predicted model, beta-propeller structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible thermal inactivation of the quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus. Ca2+ ions are necessary for re-activation.

The soluble form of the homogeneous quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus is reversibly inactivated at temperatures above 35 degrees C. An equilibrium is established between active and denatured enzyme, this depending on the protein concentration and the inactivation temperature used. Upon thermal inactivation the enzyme dissociates into the prosthetic group pyrrol...

متن کامل

Construction and characterization of mutant water-soluble PQQ glucose dehydrogenases with altered K(m) values--site-directed mutagenesis studies on the putative active site.

Based on a PCR mutant enzyme of water-soluble glucose dehydrogenase-harboring pyrroloquinoline quinone as the prosthetic group, PQQGDH-B, a site-directed mutagenesis study was carried out. The substitution of Glu277 residue with Gly resulted in a decrease in the K(m) value for glucose and altered the substrate specificity profile, compared with the wild-type enzyme. Mutational analyses on the n...

متن کامل

Increasing the thermal stability of the water-soluble pyrroloquinoline quinone glucose dehydrogenase by single amino acid replacement.

Based on the characterization of a PCR mutation of water-soluble glucose dehydrogenase possessing pyrroloquinoline quinone (PQQ), PQQGDH-B, Ser231Cys, we have constructed a series of Ser231 variants. The replacement of Ser231 to Cys, Met, Leu, Asp, Asn, His, or Lys resulted in an increase in thermal stability. Among these variants, Ser231Lys showed the highest level of thermal stability and als...

متن کامل

Nutritional complementation of oxidative glucose metabolism in Escherichia coli via pyrroloquinoline quinone-dependent glucose dehydrogenase and the Entner-Doudoroff pathway.

Two glucose-negative Escherichia coli mutants (ZSC113 and DF214) were unable to grow on glucose as the sole carbon source unless supplemented with pyrroloquinoline quinone (PQQ). PQQ is the cofactor for the periplasmic enzyme glucose dehydrogenase, which converts glucose to gluconate. Aerobically, E. coli ZSC113 grew on glucose plus PQQ with a generation time of 65 min, a generation time about ...

متن کامل

Screening of Peptide Ligands for Pyrroloquinoline Quinone Glucose Dehydrogenase Using Antagonistic Template-Based Biopanning

We have developed a novel method, antagonistic template-based biopanning, for screening peptide ligands specifically recognizing local tertiary protein structures. We chose water-soluble pyrroloquinoline quinone (PQQ) glucose dehydrogenase (GDH-B) as a model enzyme for this screening. Two GDH-B mutants were constructed as antagonistic templates; these have some point mutations to induce disrupt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Protein engineering

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 1999