Global transcriptional regulation of the locus encoding the skeletal muscle determination genes Mrf4 and Myf5.

نویسندگان

  • Jaime J Carvajal
  • Annette Keith
  • Peter W J Rigby
چکیده

The linked Mrf4 and Myf5 genes encode two transcription factors essential for the determination and differentiation of skeletal muscle in the embryo. The locus is controlled by a multitude of interdigitated enhancers that activate gene expression at different times and in precisely defined progenitor cell populations. Manipulation of the enhancer-promoter composition of the locus reveals a novel mechanism for the regulation of such a gene cluster. Enhancers, promoters, and a new class of elements we call transcription balancing sequences, which can act as cryptic promoters, exist in a series of equilibria to ensure that enhancers and promoters together produce the highly dynamic and exquisitely specific expression patterns of the two genes. The proposed model depends upon nonproductive interactions between enhancers and both minimal and cryptic promoters, and is distinct from those developed for the beta-globin and Hox clusters. Moreover, it provides an explanation for the unexpected phenotypes of the three Mrf4 knockout alleles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The expression of Myf5 in the developing mouse embryo is controlled by discrete and dispersed enhancers specific for particular populations of skeletal muscle precursors.

The development of skeletal muscle in vertebrate embryos is controlled by a transcriptional cascade that includes the four myogenic regulatory factors Myf5, Myogenin, MRF4 and MyoD. In the mouse embryo, Myf5 is the first of these factors to be expressed and mutational analyses suggest that this protein acts early in the process of commitment to the skeletal muscle fate. We have therefore analys...

متن کامل

Phosphorylation of MRF4 transactivation domain by p38 mediates repression of specific myogenic genes.

Skeletal myogenesis is associated with the activation of four muscle regulatory factors (MRFs): Myf5, MyoD, Myogenin and MRF4. Here we report that p38 mitogen-activated protein kinase represses the transcriptional activity of MRF4 (involved in late stages of myogenesis), resulting in downregulation of specific muscle genes. MRF4 is phosphorylated in vitro and in vivo by p38 on two serines (Ser3...

متن کامل

Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice.

The myogenic basic helix-loop-helix (bHLH) genes - MyoD, Myf5, myogenin and MRF4 - exhibit distinct, but overlapping expression patterns during development of the skeletal muscle lineage and loss-of-function mutations in these genes result in different effects on muscle development. MyoD and Myf5 have been shown to act early in the myogenic lineage to establish myoblast identity, whereas myogen...

متن کامل

Expression of the myogenic regulatory factor Mrf4 precedes or is contemporaneous with that of Myf5 in the somitic bud

The development of skeletal muscle in vertebrate embryos is controlled by a transcriptional cascade involving the four myogenic regulatory factors. In the somites of the mouse embryo the order of expression is thought to be Myf5, Myogenin, Mrf4 and MyoD. We have re-examined the expression pattern of Mrf4 and show that in the hypaxial domain of thoracic somites (the somitic bud) Mrf4 expression ...

متن کامل

Fine-tuning the onset of myogenesis by homeobox proteins that interact with the Myf5 limb enhancer

Skeletal myogenesis in vertebrates is initiated at different sites of skeletal muscle formation during development, by activation of specific control elements of the myogenic regulatory genes. In the mouse embryo, Myf5 is the first myogenic determination gene to be expressed and its spatiotemporal regulation requires multiple enhancer sequences, extending over 120 kb upstream of the Mrf4-Myf5 l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2008