The Dimension-Join: A New Index for Data Warehouses

نویسندگان

  • Pedro Bizarro
  • Henrique Madeira
چکیده

There are several auxiliary pre-computed access structures that allow faster answers by reading less base data. Examples are materialized views, join indexes, B-tree and bitmap indexes. This paper proposes dimension-join, a new type of index especially suited for data warehouses. The dimension-join borrows ideas from several concepts. It is a bitmap index, it is a multi-table join and when being used one of the tables is not read to improve performance. It is a multi-table join because it holds information belonging to two tables, which is similar to the join index proposed by Valduriez. However, instead of being composed by the tables’ primary keys, the dimension-join index is a bitmap index over the fact table using values from a dimension column. The dimension-join index is very useful when selecting facts depending on dimension tables belonging to snowflakes. The dimension-join represents a direct connection between the fact table and a table in the snowflake that can avoid several joins and produce enormous performance improvements. This paper also evaluates experimentally the dimension-join indexes using the TPC-H benchmark and shows that this new index structure can dramatically improve the performance for some queries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Join Index for XML Data Warehouses

XML data warehouses form an interesting basis for decision-support applications that exploit complex data. However, native-XML database management systems (DBMSs) currently bear limited performances and it is necessary to research for ways to optimize them. In this paper, we propose a new join index that is specifically adapted to the multidimensional architecture of XML warehouses. It eliminat...

متن کامل

A Data Mining Approach for selecting Bitmap Join Indices

Index selection is one of the most important decisions to take in the physical design of relational data warehouses. Indices reduce significantly the cost of processing complex OLAP queries, but require storage cost and induce maintenance overhead. Two main types of indices are available: mono-attribute indices (e.g., B-tree, bitmap, hash, etc.) and multi-attribute indices (join indices, bitmap...

متن کامل

Querying data warehouses efficiently using the Bitmap Join Index OLAP Tool

Data warehouse and OLAP are core aspects of business intelligence environments, since the former store integrated and time-variant data, while the latter enables multidimensional queries, visualization and analysis. The bitmap join index has been recognized as an efficient mechanism to speed up queries over data warehouses. However, existing OLAP tools does not use strictly this index to improv...

متن کامل

Adaptive Prejoin Approach for Performance Optimization in MapReduce-based Warehouses

MapReduce-based warehousing solutions (e.g. Hive) for big data analytics with the capabilities of storing and analyzing high volume of both structured and unstructured data in a scalable file system have emerged recently. Their efficient data loading features enable a so-called near real-time warehousing solution in contrast to those offered by conventional data warehouses with complex, long-ru...

متن کامل

An OLAP Tool Based on the Bitmap Join Index

Data warehouse and OLAP are core aspects of business intelligence environments, since the former store integrated and time-variant data, while the latter enables multidimensional queries, visualization and analysis. The bitmap join index has been recognized as an efficient mechanism to speed up queries over data warehouses. However, existing OLAP tools does not use strictly this index to improv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001