Protonic equilibria in the reductive half-reaction of the medium-chain acyl-CoA dehydrogenase.
نویسندگان
چکیده
Oxidation of thioester substrates in the medium-chain acyl-CoA dehydrogenase involves alpha-proton abstraction by the catalytic base, Glu376, with transfer of a beta-hydride equivalent to the flavin prosthetic group. Polarization of bound acyl-CoA derivatives by the recombinant human liver enzyme has been studied with 4-thia-trans-2-enoyl-CoA analogues. Polarization is maximal at low pH, with an apparent pK of 9.2 for complexes with the C8 analogue, and progressively lower pK values as the length of the chain increases. This pH effect reflects ionization of the catalytic base, since polarization of a variety of enoyl-CoA analogues by the Glu376Gln mutant is pH independent. Binding of these ligands is accompanied by uptake of about 1 proton with the wild-type enzyme, but only about 0.1 proton with the Glu376Gln mutant. Rapid reaction studies show that proton uptake with the wild-type enzyme occurs at the same rate as polarization of the enoyl-CoA thioester, but is much slower than the initial ligand binding step. Studies with 6-OH-FAD-substituted enzyme show that this isomerization reaction also influences the flavin prosthetic group inducing deprotonation to the green anionic form. The failure of the bound thioether analogue, octyl-SCoA, to elicit pK shifts to flavin and Glu376 shows the importance of the thioester carbonyl oxygen in modulating key properties of the medium-chain enzyme. The role of thioester-mediated desolvation within the active site of the acyl-CoA dehydrogenases is discussed.
منابع مشابه
Functional role of a distal (3'-phosphate) group of CoA in the recombinant human liver medium-chain acyl-CoA dehydrogenase-catalysed reaction.
The X-ray crystallographic structure of medium-chain acyl-CoA dehydrogenase (MCAD)-octenoyl-CoA complex reveals that the 3'-phosphate group of CoA is confined to the exterior of the protein structure [approx. 15 A (1.5 nm) away from the enzyme active site], and is fully exposed to the outside solvent environment. To ascertain whether such a distal (3'-phosphate) fragment of CoA plays any signif...
متن کاملThe effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart
Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...
متن کاملMolecular cloning and nucleotide sequence of cDNA encoding the entire precursor of rat liver medium chain acyl coenzyme A dehydrogenase.
cDNA encoding the precursor of rat liver medium chain acyl-CoA dehydrogenase (EC 1.3.99.3) was cloned and sequenced. The longest cDNA insert isolated was 1866 bases in length. This cDNA encodes the entire protein of 421-amino acids including a 25-amino acid leader peptide and a 396-amino acid mature polypeptide. The identity of the medium chain acyl-CoA dehydrogenase clone was confirmed by matc...
متن کاملAcyl-CoA dehydrogenases and acyl-CoA oxidases
Acyl-CoA dehydrogenases and acyl-CoA oxidases are two closely related FAD-containing enzyme families that are present inmitochondria andperoxisomes, respectively. They catalyze the dehydrogenation of acyl-CoA thioesters to the corresponding trans-2-enoyl-CoA. This review examines the structure of medium chain acyl-CoA dehydrogenase, as a representative of the dehydrogenase family, with respect ...
متن کاملAcyl-coenzyme A synthetases.
The enzymes catalysing the initial stage of the 8-oxidation of fatty acids, the acyl-CoA synthetases, have been classified into four groups based on specificity. These are: the short-chain (acetyl-CoA synthetase; EC 6.2.1 .l), medium-chain (butyryl-CoA synthetase; EC 6.2.1.2) and the long-chain fatty acyl-CoA synthetase (acyl-CoA synthetase; EC 6.2.1.3), which are ATP-dependent and follow the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 37 23 شماره
صفحات -
تاریخ انتشار 1998