Learning to imitate stochastic time series in a compositional way by chaos

نویسندگان

  • Jun Namikawa
  • Jun Tani
چکیده

This study shows that a mixture of RNN experts model can acquire the ability to generate sequences that are combination of multiple primitive patterns by means of self-organizing chaos. By training the model, each expert learns a primitive sequence pattern, and a gating network learns to imitate stochastic switching of the multiple primitives via chaotic dynamics, utilizing a sensitive dependence on initial conditions. As a demonstration, we present a numerical simulation in which the model learns Markov chain switching among some Lissajous curves by chaotic dynamics. Our analysis shows that by using a sufficient amount of training data, balanced with the network memory capacity, it is possible to satisfy the conditions for embedding the target stochastic sequences into a chaotic dynamical system. It is also shown that reconstruction of a stochastic time series by a chaotic model can be stabilized by adding a negligible amount of noise to the dynamics of the model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

River Discharge Time Series Prediction by Chaos Theory

The application of chaos theory in hydrology has been gaining considerable interest in recent years.Based on the chaos theory, the random seemingly series can be attributed to deterministic rules. Thedynamic structures of the seemingly complex processes, such as river flow variations, might be betterunderstood using nonlinear deterministic chaotic models than the stochastic ones. In this paper,...

متن کامل

Investigating Chaos in Tehran Stock Exchange Index

Modeling and analysis of future prices has been hot topic for economic analysts in recent years. Traditionally, the complex movements in the prices are usually taken as random or stochastic process. However, they may be produced by a deterministic nonlinear process. Accuracy and efficiency of economic models in the short period forecasting is strategic and crucial for business world. Nonlinear ...

متن کامل

A Novel Fuzzy Based Method for Heart Rate Variability Prediction

Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...

متن کامل

Chaotic Analysis and Prediction of River Flows

Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...

متن کامل

Approximately Periodic Time Series and Nonlinear Structures

In this thesis a previously developed framework for modelling diversity of approximately periodic time series is considered. In this framework the diversity is modelled deterministically, exploiting the irregularity of chaos. This is an alternative to other well established frameworks which use probability distributions and other stochastic tools to describe diversity. The diversity which is to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 23 5  شماره 

صفحات  -

تاریخ انتشار 2010