A 'dirty' business: testing the limitations of terminal restriction fragment length polymorphism (TRFLP) analysis of soil fungi.

نویسندگان

  • Peter G Avis
  • Ian A Dickie
  • Gregory M Mueller
چکیده

Terminal restriction fragment length polymorphism (TRFLP) is an increasingly popular method in molecular ecology. However, several key limitations of this method have not been fully examined especially when used to study fungi. We investigated the impact of spore contamination, intracollection ribosomal DNA internal transcribed spacer (ITS) region variation, and conserved restriction enzyme recognition loci on the results produced by TRFLP to characterize soil fungal communities. We find that (i) the potential for nontarget structures such as spores to contribute DNA to target sample extractions is high; (ii) multiple fragments (i.e. 'extra peaks') per PCR primer-restriction enzyme combination can be detected that are caused by restriction enzyme inefficiency and intracollection ribosomal DNA ITS variation; and (iii) restriction enzyme digestion in conserved vs. variable gene regions leads to different characterizations of community diversity. Based on these results, we suggest that studies employing TRFLP need to include information from known, identified fungi from sites within which studies take place and not to rely only on TRFLP profiles as a short cut to fungal community description.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of multiplex terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community.

A multiplex terminal restriction fragment length polymorphism (M-TRFLP) fingerprinting method was developed and validated for simultaneous analysis of the diversity and community structure of two or more microbial taxa (up to four taxa). The reproducibility and robustness of the method were examined using soil samples collected from different habitats. DNA was PCR amplified separately from soil...

متن کامل

What Goes in Must Come out: Testing for Biases in Molecular Analysis of Arbuscular Mycorrhizal Fungal Communities

Arbuscular mycorrhizal (AM) fungi are widely distributed microbes that form obligate symbioses with the majority of terrestrial plants, altering nutrient transfers between soils and plants, thereby profoundly affecting plant growth and ecosystem properties. Molecular methods are commonly used in the study of AM fungal communities. However, the biases associated with PCR amplification of these o...

متن کامل

T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles.

Terminal restriction fragment length polymorphism (tRFLP) is a potentially high-throughput method for the analysis of complex microbial communities. Comparison of multiple tRFLP profiles to identify shared and unique components of microbial communities however, is done manually, which is both time consuming and error prone. This paper describes a freely accessible web-based program, T-Align (ht...

متن کامل

Identification of infectious agents in onychomycoses by PCR-terminal restriction fragment length polymorphism.

A fast and reliable assay for the identification of dermatophyte fungi and nondermatophyte fungi (NDF) in onychomycosis is essential, since NDF are especially difficult to cure using standard treatment. Diagnosis is usually based on both direct microscopic examination of nail scrapings and macroscopic and microscopic identification of the infectious fungus in culture assays. In the last decade,...

متن کامل

Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis.

Anaerobic nitrogen-fixing consortia consisting of N2-fixing clostridia and diverse nondiazotrophic bacteria were previously isolated from various gramineous plants (K. Minamisawa, K. Nishioka, T. Miyaki, B. Ye, T. Miyamoto, M. You, A. Saito, M. Saito, W. Barraquio, N. Teaumroong, T. Sein, and T. Tadashi, Appl. Environ. Microbiol. 70:3096-3102, 2004). For this work, clostridial populations and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular ecology

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2006