Se p 20 07 Ricci iterations on Kähler classes
نویسنده
چکیده
In this paper we consider the dynamical system involved by the Ricci operator on the space of Kähler metrics. A. Nadel has defined an iteration scheme given by the Ricci operator for Fano manifold and asked whether it has some nontrivial periodic points. First, we prove that no such periodic points can exist. We define the inverse of the Ricci operator and consider the dynamical behaviour of its iterates for a Fano KählerEinstein manifold. In particular we show that the iterates do converge to the Kähler-Ricci soliton for toric manifolds. Finally, we define a finite dimensional procedure to give an approximation of Kähler-Einstein metrics using this iterative procedure and apply it for P blown up in 3 points.
منابع مشابه
. D G ] 1 5 Se p 20 07 Ricci iterations on Kähler classes
In this paper we consider the dynamical system involved by the Ricci operator on the space of Kähler metrics. A. Nadel has defined an iteration scheme given by the Ricci operator for Fano manifold and asked whether it has some nontrivial periodic points. First, we prove that no such periodic points can exist. We define the inverse of the Ricci operator and consider the dynamical behaviour of it...
متن کاملSe p 20 09 THE KÄHLER - RICCI FLOW THROUGH SINGULARITIES 1
We prove the existence and uniqueness of the weak Kähler-Ricci flow on projective varieties with log terminal singularities. It is also shown that the weak Kähler-Ricci flow can be uniquely continued through divisorial contractions and flips if they exist. We then propose an analytic version of the Minimal Model Program with Ricci flow.
متن کاملJa n 20 09 Kähler Ricci Flow on Fano Surfaces ( I )
We show the properties of the blowup limits of Kähler Ricci flow solutions on Fano surfaces if Riemannian curvature is unbounded. As an application, on every toric Fano surface, we prove that Kähler Ricci flow converges to a Kähler Ricci soliton metric if the initial metric has toric symmetry. Therefore we give a new Ricci flow proof of existence of Kähler Ricci soliton metrics on toric surfaces.
متن کاملA pr 2 00 9 LIMITS OF CALABI - YAU METRICS WHEN THE KÄHLER CLASS DEGENERATES
We study the behaviour of families of Ricci-flat Kähler metrics on a projective Calabi-Yau manifold when the Kähler classes degenerate to the boundary of the ample cone. We prove that if the limit class is big and nef the Ricci-flat metrics converge smoothly on compact sets outside a subvariety to a limit incomplete Ricci-flat metric. The limit can also be understood from algebraic geometry.
متن کاملTotally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures
In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008