Optimal Predictive Design Augmentation for Spatial Generalised Linear Mixed Models

نویسندگان

  • Evangelos Evangelou
  • Zhengyuan Zhu
چکیده

A typical model for geostatistical data when the observations are counts is the spatial generalised linear mixed model. We present a criterion for optimal sampling design under this framework which aims to minimise the error in the prediction of the underlying spatial random effects. The proposed criterion is derived by performing an asymptotic expansion to the conditional prediction variance. We argue that the mean of the spatial process needs to be taken into account in the construction of the predictive design, which we demonstrate through a simulation study where we compare the proposed criterion against the widely-used space-filling design. Furthermore, our results are applied to the Norway precipitation data and the rhizoctonia disease data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Nonlinear Generalised Predictive Control and Optimal Dynamical Inversion Control

This paper addresses nonlinear Generalised Predictive Control (GPC) for nonlinear mechanical systems and its relationship with dynamical inversion control. First continuous-time generalised predictive control for non-linear systems is developed and the stability of the closed-loop systems is shown. It is pointed out that dynamical inversion control is a special case of continuous-time nonlinear...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

A Switchgrass-based Bioethanol Supply Chain Network Design Model under Auto-Regressive Moving Average Demand

Switchgrass is known as one of the best second-generation lignocellulosic biomasses for bioethanol production. Designing efficient switchgrass-based bioethanol supply chain (SBSC) is an essential requirement for commercializing the bioethanol production from switchgrass. This paper presents a mixed integer linear programming (MILP) model to design SBSC in which bioethanol demand is under auto-r...

متن کامل

Spatio-Phylogenetic Multi-Species Distribution Models

1 Ecologists increasingly consider phylogenetic relatedness in both 2 community composition and spatial arrangements in communities. 3 Here we considered both the phylogenetic correlation between mul4 tiple species and the spatial correlation induced by unobserved spa5 tial heterogeneity on multiple plots. For this analysis, we introduced 6 phylogenetic spatial generalised linear mixed models (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012