Algebraic Multigrid Methods

نویسندگان

  • Jinchao Xu
  • Ludmil Zikatanov
چکیده

This paper is to give an overview of AMG methods for solving large scale systems of equations such as those from the discretization of partial differential equations. AMG is often understood as the acronym of “Algebraic Multi-Grid”, but it can also be understood as “Abstract Muti-Grid”. Indeed, as it demonstrates in this paper, how and why an algebraic multigrid method can be better understood in a more abstract level. In the literature, there are a variety of different algebraic multigrid methods that have been developed from different perspectives. In this paper, we try to develop a unified framework and theory that can be used to derive and analyze different algebraic multigrid methods in a coherent manner. Given a smoother R for a matrix A, such as Gauss-Seidel or Jacobi, we prove that the optimal coarse space of dimension nc is the span of the eigen-vectors corresponding to the first nc eiven-vectors R̄A (with R̄ = R + RT − RT AR). We also prove that this optimal coarse space can be obtained by a constrained trace-minimization problem for a matrix associated with R̄A and demonstrate that coarse spaces of most of existing AMG methods can be viewed some approximate solution of this trace-minimization problem. Furthermore, we provide a general approach to the construction of a quasi-optimal coarse space and we prove that under appropriate assumptions the resulting two-level AMG method for the underlying linear system converges uniformly with respect to the size of the problem, the coefficient variation, and the anisotropy. Our theory applies to most existing multigrid methods, including the standard geometric multigrid method, the classic AMG, energy-minimization AMG, unsmoothed and smoothed aggregation AMG, and spectral AMGe.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic multigrid methods for constrained linear systems with applications to contact problems in solid mechanics

This article develops a general framework for applying algebraic multigrid techniques to constrained systems of linear algebraic equations that arise in applications with discretized PDEs. We discuss constraint coarsening strategies for constructing multigrid coarse grid spaces and several classes of multigrid smoothers for these systems. The potential of these techniques is investigated with t...

متن کامل

Algebraic analysis of V–cycle multigrid

We consider multigrid methods for symmetric positive definite linear systems. We develop an algebraic analysis of V–cycle schemes with Galerkin coarse grid matrices. This analysis is based on the Successive Subspace Correction convergence theory which we revisit. We reformulate it in a purely algebraic way, and extend its scope of application to, e.g., algebraic multigrid methods. This reformul...

متن کامل

An Algebraic Multigrid Solver for Analytical with Layout Based Clustering Placement

An efficient matrix solver is critical to the analytical placement. As the size of the matrix becomes huge, the multilevel methods tum out to be more efficient and more scalable. Algebraic Multigrid (AMG) is a multilevel technique to speedup the iterative matrix solver [lo]. We apply the algebraic multigrid method to solve the linear equations that arise from the analytical placement. A layout ...

متن کامل

Parallel linear algebra and the application to multigrid methods

We explain a general model for a parallel linear algebra. All algebraic operations and parallel extensions are defined formally, and it is shown that in this model multigrid methods on a distributed set of indices can be realized. This abstract formalization leads to an automatic realization of parallel methods for time-dependent and nonlinear partial differential equations and the solution of ...

متن کامل

Adaptive Algebraic Multigrid

Efficient numerical simulation of physical processes is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic ...

متن کامل

Algebraic Multigrid Methods for Direct Frequency Response Analyses in Solid Mechanics

Algebraic multigrid (AMG) methods have proven to be effective for solving the linear algebraic system of equations that arise from many classes of unstructured discretized elliptic PDEs. Standard AMG methods, however, are not suitable for shifted linear systems from elliptic PDEs, such as discretized Helmholtz operators, due to the indefiniteness of the system and the presence of low energy mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016