A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics
نویسنده
چکیده
A local symmetric weak form (LSWF) for linear potential problems is developed, and a truly meshless method, based on the LSWF and the moving least squares approximation, is presented for solving potential problems with high accuracy. The essential boundary conditions in the present formulation are imposed by a penalty method. The present method does not need a ``®nite element mesh'', either for purposes of interpolation of the solution variables, or for the integration of the ``energy''. All integrals can be easily evaluated over regularly shaped domains (in general, spheres in three-dimensional problems) and their boundaries. No post-smoothing technique is required for computing the derivatives of the unknown variable, since the original solution, using the moving least squares approximation, is already smooth enough. Several numerical examples are presented in the paper. In the example problems dealing with Laplace & Poisson's equations, high rates of convergence with mesh re®nement for the Sobolev norms jj jj0 and jj jj1 have been found, and the values of the unknown variable and its derivatives are quite accurate. In essence, the present meshless method based on the LSWF is found to be a simple, ef®cient, and attractive method with a great potential in engineering applications.
منابع مشابه
Axial buckling analysis of an isotropic cylindrical shell using the meshless local Petrov-Galerkin method
In this paper the meshless local Petrov-Galerkin (MLPG) method is implemented to study the buckling of isotropic cylindrical shells under axial load. Displacement field equations, based on Donnell and first order shear deformation theory, are taken into consideration. The set of governing equations of motion are numerically solved by the MLPG method in which according to a semi-inverse method, ...
متن کاملThree dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملOptimization of Meshless Local Petrov-Galerkin Parameters using Genetic Algorithm for 3D Elasto-static Problems (TECHNICAL NOTE)
A truly Meshless Local Petrov-Galerkin (MLPG) method is developed for solving 3D elasto-static problems. Using the general MLPG concept, this method is derived through the local weak forms of the equilibrium equations, by using a test function, namely, the Heaviside step function. The Moving Least Squares (MLS) are chosen to construct the shape functions. The penalty approach is used to impose ...
متن کاملThe Applications of Meshless Local Petrov-Galerkin (MLPG) Approaches in High-Speed Impact, Penetration and Perforation Problems
This paper presents the implementation of a three-dimensional dynamic code, for contact, impact, and penetration mechanics, based on the Meshless Local Petrov-Galerkin (MLPG) approach. In the current implementation, both velocities and velocity-gradients are interpolated independently, and their compatibility is enforced only at nodal points. As a result, the time consuming differentiations of ...
متن کاملOptimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملA critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods
The essential features of the Meshless Local Petrov-Galerkin (MLPG) method, and of the Local Boundary Integral Equation (LBIE) method, are critically examined from the points of view of a non-element interpolation of the ®eld variables, and of the meshless numerical integration of the weak form to generate the stiffness matrix. As truly meshless methods, the MLPG and the LBIE methods hold a gre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998