Windthrow Detection in European Forests with Very High-Resolution Optical Data
نویسندگان
چکیده
With climate change, extreme storms are expected to occur more frequently. These storms can cause severe forest damage, provoking direct and indirect economic losses for forestry. To minimize economic losses, the windthrow areas need to be detected fast to prevent subsequent biotic damage, for example, related to beetle infestations. Remote sensing is an efficient tool with high potential to cost-efficiently map large storm affected regions. Storm Niklas hit South Germany in March 2015 and caused widespread forest cover loss. We present a two-step change detection approach applying commercial very high-resolution optical Earth Observation data to spot forest damage. First, an object-based bi-temporal change analysis is carried out to identify windthrow areas larger than 0.5 ha. For this purpose, a supervised Random Forest classifier is used, including a semi-automatic feature selection procedure; for image segmentation, the large-scale mean shift algorithm was chosen. Input features include spectral characteristics, texture, vegetation indices, layer combinations and spectral transformations. A hybrid-change detection approach at pixel-level subsequently identifies small groups of fallen trees, combining the most important features of the previous processing step with Spectral Angle Mapper and Multivariate Alteration Detection. The methodology was evaluated on two test sites in Bavaria with RapidEye data at 5 m pixel resolution. The results regarding windthrow areas larger than 0.5 ha were validated with reference data from field visits and acquired through orthophoto interpretation. For the two test sites, the novel object-based change detection approach identified over 90% of the windthrow areas (≥0.5 ha). The red edge channel was the most important for windthrow identification. Accuracy levels of the change detection at tree level could not be calculated, as it was not possible to collect field data for single trees, nor was it possible to perform an orthophoto validation. Nevertheless, the plausibility and applicability of the pixel-based approach is demonstrated on a second test site.
منابع مشابه
Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery
The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...
متن کاملVHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine
Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...
متن کاملAbiotic Controls on Long-term Windthrow Disturbance and Temperate Rain Forest Dynamics in Southeast Alaska
We investigated the role of abiotic factors in controlling patterns of longterm windthrow in the pristine coastal temperate rain forests of southeast Alaska. Our objectives were to test the extent to which long-term patterns of windthrow can be predicted spatially at the landscape scale by using four abiotic factors (slope, elevation, soil stability, and exposure to prevailing storm winds), eva...
متن کاملEdge Effects in High - elevation Forests at Sicamous Creek Extension Note 62
Edge effects are increasingly important in British Columbia forests, as cutblocks become smaller and harvesting options with retention patches are more commonly used. This note summarizes edge effects for ecosystem variables, including microclimate, soil chemistry, snow depth, windthrow, regeneration, vegetation, and animals, at the Sicamous Creek Silvicultural Systems project in a high-elev...
متن کاملObservational evidence for cloud cover enhancement over western European forests
Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017