Wavelet Decomposition Techniques and Hardy Inequalities for Function Spaces on Cellular Domains

نویسنده

  • BENJAMIN SCHARF
چکیده

A rather tricky question is the construction of wavelet bases on domains for suitable function spaces (Sobolev, Besov, Triebel-Lizorkin type). In his monograph from 2008, Triebel presented an approach how to construct wavelet (Riesz) bases in function spaces of Besov and Triebel-Lizorkin type on cellular domains, in particular on the cube. However, he had to exclude essential exceptional values of the smoothness parameter s, for instance the theorems do not cover the Sobolev space W 1 2 (Q) on the n-dimensional cube Q for n at least 2. Triebel also gave an idea how to deal with those exceptional values for the Triebel-Lizorkin function space scale on the cube Q: He suggested to introduce modified function spaces for the critical values, the so-called reinforced spaces. In this paper we start examining these reinforced spaces and transfer the crucial decomposition theorems necessary for establishing a wavelet basis from the non-critical values to analogous results for the critical cases now decomposing the reinforced function spaces of Triebel-Lizorkin type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

On a decomposition of Hardy--Hilbert's type inequality

In this paper, two pairs of new inequalities are given, which decompose two Hilbert-type inequalities.

متن کامل

0 Ja n 20 02 Hardy spaces and divergence operators on strongly Lipschitz domains

Let Ω be a strongly Lipschitz domain of Rn. Consider an elliptic second order divergence operator L (including a boundary condition on ∂Ω) and define a Hardy space by imposing the non-tangential maximal function of the extension of a function f via the Poisson semigroup for L to be in L1. Under suitable assumptions on L, we identify this maximal Hardy space with atomic Hardy spaces, namely with...

متن کامل

Operator Valued Hardy Spaces

We give a systematic study on the Hardy spaces of functions with values in the non-commutative L-spaces associated with a semifinite von Neumann algebra M. This is motivated by the works on matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), and on the other hand, by the recent development on the non-commutative martingale inequalities. Our non-com...

متن کامل

Abstract Hardy-Sobolev spaces and interpolation

Hardy-Sobolev spaces and interpolation N. Badr Institut Camille Jordan Université Claude Bernard Lyon 1 UMR du CNRS 5208 F-69622 Villeurbanne Cedex [email protected] F. Bernicot Laboratoire de Mathématiques Université de Paris-Sud UMR du CNRS 8628 F-91405 Orsay Cedex [email protected] October 19, 2010 Abstract The purpose of this work is to describe an abstract theory of Ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013