Temperature-dependent phase behavior of polyelectrolyte-mixed micelle systems.
نویسندگان
چکیده
The effect of temperature on the phase behavior of a polycation-anionic/nonionic mixed micelle system, poly(dimethyldiallylammonium chloride)-sodium dodecylsulfate/Triton X-100, was studied over a wide range of surfactant compositions, ionic strengths, and polycation molecular weights using turbidimetry and dynamic light scattering. Soluble complexes become biphasic upon heating through either liquid-liquid (coacervation) or liquid-solid (precipitation) separation. The biphasic boundary comprises two regions: a coacervate domain exhibiting a lower critical solution temperature and a second superimposed domain in which either solids or very dense and viscous fluids are formed upon heating. The position of the first region is symmetrically centered around conditions corresponding to charge neutralization of complexes and their aggregates at incipient phase separation. The second region, observed at high micelle charge, corresponds to the collapse of polycation onto micelle surfaces and expulsion of counterions and can produce either dense coacervate or precipitate. The two regions exhibit different dependences on ionic strength, polyelectrolyte molecular weight, and concentration, from which inferences about the mechanisms of phase separation may be drawn. Preliminary observations of the dense liquid phases isolated after coacervation disclose a number of interesting optical and rheological properties, possibly arising from shear-induced phase separation.
منابع مشابه
Shear-induced phase separation in polyelectrolyte/mixed micelle coacervates.
A quantitative study of the shear-induced phase separation of a polycation/anionic-nonionic micelle coacervate is presented. Simultaneous rheology and small-angle light scattering (SALS) measurements allow the elucidation of micrometer-scale phase separation under flow in three coacervate solutions. Below 18 degrees C, all three of the coacervate solutions are optically clear Newtonian fluids a...
متن کاملMesophase separation in polyelectrolyte-mixed micelle coacervates.
Mesophase separation has been identified in a polycation/anionic-nonionic mixed micelle system formed by the coacervation of poly(diallyldimethylammoniumchloride)/sodium dodecylsulfate-Triton X-100 in 0.40 M NaCl. The resultant dense, optically clear fluid was studied by turbidity, dynamic light scattering (DLS), and rheology. The presence of two diffusion modes in DLS points to microscopic het...
متن کاملInteraction and micellar behavior of aqueous mixtures of surface active ionic liquid and cationic surfactant: experimental and theoretical studies
The interaction between an ionic liquid (1-dodecyl-3-methylimidazolium bromide or IL) and cationic surfactant (dodecyltrimethylammonium bromide (DTAB)) in aqueous solution has been investigated at various mole fractions and temperature 30 ˚C using experimental and theoretical methods. The critical micelle concentration (CMC) of pure components and their binary mixtures, mixed micellar compositi...
متن کاملCryo-TEM of Polyelectrolyte-Micelle Complexes
Cryo-TEM was carried out on samples containing polyelectrolyte-micelle complexes, formed by combining poly(diallyldimethylammonium chloride) (PDADMAC), a strong cationic polyelectrolye, with oppositely charged mixed micelles of sodium dodecyl sulfate (SDS) and nonionic Triton X-100 (TX100), in 0.40 M NaCl. Complexation appears to involve the formation of micelle-rich regions, presumably within ...
متن کاملSynthesis of hydroxyapatite nanoparticles trough polyelectrolyte-modified microemulsions
The paper is focused on the formation of hydroxyapatite nanoparticles (HAp) in polyelectrolyte-modified microemulsions, in a microemulsion template phase consisting of cyclohexane, water, cationic surfactant and cosurfactant, in the presence of Na-polyacrylate (PAA) as an anionic polyelectrolyte. It is shown that PAA, can be incorporated into the individual inverse microemulsion droplets. The m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 111 29 شماره
صفحات -
تاریخ انتشار 2007