Modeling Sea - Level Change Using Errors - in - Variables Integrated Gaussian Processes

نویسندگان

  • NIAMH CAHILL
  • ANDREW C. KEMP
  • BENJAMIN P. HORTON
  • ANDREW C. PARNELL
چکیده

We perform Bayesian inference on historical and late Holocene (last 2000 years) rates of sea-level change. The input data to our model are tidegauge measurements and proxy reconstructions from cores of coastal sediment. These data are complicated by multiple sources of uncertainty, some of which arise as part of the data collection exercise. Notably, the proxy reconstructions include temporal uncertainty from dating of the sediment core using techniques such as radiocarbon. The model we propose places a Gaussian process prior on the rate of sea-level change, which is then integrated and set in an errors-in-variables framework to take account of age uncertainty. The resulting model captures the continuous and dynamic evolution of sea-level change with full consideration of all sources of uncertainty. We demonstrate the performance of our model using two real (and previously published) example data sets. The global tide-gauge data set indicates that sea-level rise increased from a rate with a posterior mean of 1.13 mm/yr in 1880 AD (0.89 to 1.28 mm/yr 95% credible interval for the posterior mean) to a posterior mean rate of 1.92 mm/yr in 2009 AD (1.84 to 2.03 mm/yr 95% credible interval for the posterior mean). The proxy reconstruction from North Carolina (USA) after correction for land-level change shows the 2000 AD rate of rise to have a posterior mean of 2.44 mm/yr (1.91 to 3.01 mm/yr 95% credible interval). This is unprecedented in at least the last 2000 years.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change

We present a Bayesian hierarchical model for reconstructing the continuous and dynamic evolution of relative sea-level (RSL) change with quantified uncertainty. The reconstruction is produced from biological (foraminifera) and geochemical (δC) sea-level indicators preserved in dated cores of salt-marsh sediment. Our model is comprised of three modules: (1) a new Bayesian transfer (B-TF) functio...

متن کامل

Simulation of climate change in Iran during 2071-2100 using PRECIS regional climate modelling system

Parameters such as future precipitation, temperature, snowfall, and runoff were modeled using PRECIS regionalclimate modeling system in Iran with the horizontal resolutions of 0.44×0.44°C in latitude and longitude under SRESA2 and B2 scenarios. The dataset was based on HadAM3p during the periods of 1961-1990 and 2071-2100. Theoverall precipitation error of the model in the period of 1961-1990 w...

متن کامل

Caspian Sea south coast future climate change estimations through regional climate model

. Caspian Sea south coast future climate change estimations through regional climate model many physical of the procedures related to climate change are not perceived thoroughly. Scientific knowledge used to show those procedures completely, and to analyses forecasts is so complex, since most current studies about climate physical model have been done through semi experimental and random model...

متن کامل

Comparison of the Performance of Geographically Weighted Regression and Ordinary Least Squares for modeling of Sea surface temperature in Oman Sea

In Marine discussions, the study of sea surface temperature (SST) and study of its spatial relationships with other ocean parameters are of particular importance, in such a way that the accurate recognition of the SST relationships with other parameters allows the study of many ocean and atmospheric processes. Therefore, in this study, spatial relations modeling of SST with Surface Wind Speed (...

متن کامل

Assessing Steady-State, Multivariate Experimental Data Using Gaussian Processes: The GPExp Open-Source Library

Experimental data are subject to different sources of disturbance and errors, whose importance should be assessed. The level of noise, the presence of outliers or a measure of the “explainability” of the key variables with respect to the externally-imposed operating condition are important indicators, but are not straightforward to obtain, especially if the data are sparse and multivariate. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015