Differential intranuclear organization of transcription factors Sp1 and Sp3.
نویسندگان
چکیده
Sp1 and Sp3 are ubiquitously expressed mammalian transcription factors that activate or repress the expression of a variety of genes and are thought to compete for the same DNA binding site. We used indirect immunofluorescence microscopy and image deconvolution to show that Sp1 and Sp3 are organized into distinct nonoverlapping domains in human breast and ovarian cells. Domains of Sp1 and Sp3 infrequently associate with sites of transcription. Sp3 partitions with the tightly bound nuclear protein fraction of hormone responsive MCF-7 breast cancer cells, whereas only a subpopulation of Sp1 is found in that fraction. Both Sp1 and Sp3 are bound to the nuclear matrix, and the nuclear matrix-associated sites of Sp1 and Sp3 are different. Indirect immunofluorescence studies demonstrate that Sp1 and Sp3 associate with histone deacetylases 1 and 2 and with the estrogen receptor alpha, albeit at low frequencies in MCF-7 cells. Chromatin immunoprecipitation (ChIP) and re-ChIP assays revealed that although both Sp1 and Sp3 bind to the estrogen-responsive trefoil factor 1 promoter in MCF-7 cells, they do not occupy the same promoter. Our results demonstrate the different features of Sp1 and Sp3, providing further evidence that Sp3 is not a functional equivalent of Sp1.
منابع مشابه
Functional significance of Sp1, Sp2, and Sp3 transcription factors in regulation of the murine CTP:phosphocholine cytidylyltransferase alpha promoter.
The transcription factor Sp1 has been implicated in regulation of the expression of the murine CTP:phosphocholine cytidylyltransferase alpha (CTalpha) gene, Ctpct (M. Bakovic, K. Waite, W. Tang, I. Tabas, and D. E. Vance. 1999. Biochim. Biophys. Acta. 1438: 147;-165). We have utilized transient transfections, mutation analysis, electromobility gel-shifts, and immunoblot analysis to test the hyp...
متن کاملStability of the Sp3-DNA complex is promoter-specific: Sp3 efficiently competes with Sp1 for binding to promoters containing multiple Sp-sites.
The transcription regulatory protein Sp3 shares more than 90% sequence homology with Sp1 in the DNA-binding domain and they bind to the same cognate DNA-element. However, the transcriptional activities of these two Sp-family factors are not equivalent. While Sp1 functions strictly as a transcriptional activator, Sp3 has been shown to be transcriptionally inactive for promoters containing multip...
متن کاملFunctional analyses of the transcription factor Sp4 reveal properties distinct from Sp1 and Sp3.
Sp4 is a human sequence-specific DNA binding protein with structural features similar to those described for the transcription factors Sp1 and Sp3. These three proteins contain two glutamine-rich regions and a highly conserved DNA binding domain composed of three zinc fingers. Consistently, Sp1, Sp3, and Sp4 do have the same DNA binding specificities. In this report, we have embarked on a detai...
متن کاملPhysiological TLR5 expression in the intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms
Toll-like receptor 5 (TLR5) expression in the intestinal epithelial cells (IECs) is critical to maintain health, as underscored by multiple intestinal and extra-intestinal diseases in mice genetically engineered for IEC-specific TLR5 knockout. A gradient of expression exists in the colonic epithelial cells from the cecum to the distal colon. Intriguingly, an identical gradient for the dietary m...
متن کاملIdentification of SP3 as a negative regulatory transcription factor in the monocyte expression of growth hormone.
A number of studies from different laboratories clearly show that cells of the immune system produce a GH molecule indistinguishable from that produced in the pituitary. A more recent finding from our studies suggests that monocytes use the same first exon and promoter sequence for the expression of lymphocyte GH as that reported for the expression of pituitary GH. In this report we have extend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 16 9 شماره
صفحات -
تاریخ انتشار 2005