Composite Convex Minimization Involving Self-concordant-Like Cost Functions

نویسندگان

  • Quoc Tran-Dinh
  • Yen-Huan Li
  • Volkan Cevher
چکیده

The self-concordant-like property of a smooth convex function is a new analytical structure that generalizes the self-concordant notion. While a wide variety of important applications feature the selfconcordant-like property, this concept has heretofore remained unexploited in convex optimization. To this end, we develop a variable metric framework of minimizing the sum of a “simple” convex function and a self-concordant-like function. We introduce a new analytic step-size selection procedure and prove that the basic gradient algorithm has improved convergence guarantees as compared to “fast” algorithms that rely on the Lipschitz gradient property. Our numerical tests with real-data sets shows that the practice indeed follows the theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods

We study the smooth structure of convex functions by generalizing a powerful concept so-called self-concordance introduced by Nesterov and Nemirovskii in the early 1990s to a broader class of convex functions, which we call generalized self-concordant functions. This notion allows us to develop a unified framework for designing Newton-type methods to solve convex optimization problems. The prop...

متن کامل

Randomized block proximal damped Newton method for composite self-concordant minimization

In this paper we consider the composite self-concordant (CSC) minimization problem, which minimizes the sum of a self-concordant function f and a (possibly nonsmooth) proper closed convex function g. The CSC minimization is the cornerstone of the path-following interior point methods for solving a broad class of convex optimization problems. It has also found numerous applications in machine le...

متن کامل

A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions

We propose an algorithmic framework for convex minimization problems of composite functions with two terms: a self-concordant part and a possibly nonsmooth regularization part. Our method is a new proximal Newton algorithm with local quadratic convergence rate. As a specific problem instance, we consider sparse precision matrix estimation problems in graph learning. Via a careful dual formulati...

متن کامل

Composite self-concordant minimization

We propose a variable metric framework for minimizing the sum of a self-concordant function and a possibly non-smooth convex function, endowed with an easily computable proximal operator. We theoretically establish the convergence of our framework without relying on the usual Lipschitz gradient assumption on the smooth part. An important highlight of our work is a new set of analytic step-size ...

متن کامل

A Primal-Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms

We propose a new first-order splitting algorithm for solving jointly the primal and dual formulations of large-scale convex minimization problems involving the sum of a smooth function with Lipschitzian gradient, a nonsmooth proximable function, and linear composite functions. This is a full splitting approach, in the sense that the gradient and the linear operators involved are applied explici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015