ar X iv : h ep - p h / 02 09 28 4 v 1 2 4 Se p 20 02 1 Canonical aspects of strangeness enhancement

نویسندگان

  • A. Tounsi
  • A. Mischke
  • K. Redlich
چکیده

Strangeness enhancement (SE) in heavy ion collisions can be understood in the statistical model on the basis of canonical suppression. In this formulation, SE is a consequence of the transition from canonical to the asymptotic grand canonical limit and is predicted to be a decreasing function of collision energy. This model predictions are consistent with the recent NA49 data on Λ enhancement at p lab = 40, 80, 158 GeV.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

X iv : h ep - p h / 02 09 28 3 v 1 2 4 Se p 20 02 η b Decay into Two Photons

We discuss the theoretical predictions for the two photon decay width of the pseudoscalar η b meson. Predictions from potential models are examined. It is found that various models are in good agreement with each other. Results for η b are also compared with those from Υ data through the NRQCD procedure.

متن کامل

ar X iv : h ep - p h / 02 09 28 9 v 1 2 4 Se p 20 02 DISPERSIVE TREATMENT OF K → ππ

We discuss a new method to treat the K → ππ amplitude dispersively, taking into full account the effects of final state interatcions. Our approach is based on a set of dispersion relations for the K → ππ amplitude, in which the weak Hamiltonian carries momentum. In these dispersion relations two subtraction constants have to be introduced, whereby one can be related via a soft pion theorem to t...

متن کامل

ar X iv : h ep - p h / 02 09 33 2 v 1 2 7 Se p 20 02 1 K → ππ Electroweak Penguins in the Chiral Limit

We report on dispersive and finite energy sum rule analyses of the electroweak penguin matrix elements (ππ)2|Q7,8|K 0 in the chiral limit. We accomplish the correct perturbative matching (scale and scheme dependence) at NLO in αs, and we describe two different strategies for numerical evaluation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002