Compact Quantum Modeling Framework for Nanoscale Double-Gate MOSFET

نویسندگان

  • Udit Monga
  • T. A. Fjeldly
چکیده

A quantum mechanical modeling framework for ultrathin body (UTB) device operating in the subthreshold and near-threshold regime is presented. For subthreshold conditions, we have assumed that the electrostatics is dominated by capacitive coupling between the body electrodes. Hence, the charge is neglected in Poisson equation, thus decoupling the quantum effects and electrostatics in the body. The potential is obtained as a solution of the 2D Laplace equation with the help of conformal mapping techniques. In the near-threshold regime, we have solved Poisson’s equation using the quantum charge density along the gate-to-gate symmetry line to calculate the total potential. We find that the classical approach underestimates the total potential inside the device body. Finally, the current in subthreshold is modeled assuming drift-diffusion transport with electron density calculated quantum mechanically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drain Current Models for Single-Gate Mosfets & Undoped Symmetric & Asymmetric Double-Gate SOI Mosfets And Quantum Mechanical Effects: A Review

In this paper modeling framework for single gate conventional planar MOSFET and double gate (DG) MOSFETS are reviewed. MOS Modeling can be done by either analytical modeling or compact modeling. Single gate MOSFET technology has been the choice of mainstream digital circuits for VLSI as well as for other high frequency application in the low GHZ range. The major single gate MOS modeling methods...

متن کامل

Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study

A comprehensive study of Schottky barrier MOSFET (SBMOSFET) scaling issue is performed to determine the role of wafer orientation and structural parameters on the performance of this device within Non-equilibrium Green's Function formalism. Quantum confinement increases the effective Schottky barrier height (SBH). (100) orientation provides lower effective Schottky barrier height in compa...

متن کامل

Analytical drain current model reproducing advanced transport models in nanoscale cylindrical surrounding-gate (SRG) MOSFETs

In this paper we extend a compact surrounding-gate MOSFET model to include the hydrodynamic transport and quantum mechanical effects, and we show that it can reproduce the results of 3D numerical simulations using advanced transport models. A template device representative for the cylindrical surrounding-gate MOSFET was used to validate the model. The final compact model includes mobility degra...

متن کامل

A compact quantum correction model for symmetric double gate metal-oxide- semiconductor field-effect transistor

Articles you may be interested in Possible unified model for the Hooge parameter in inversion-layer-channel metal-oxide-semiconductor field-effect transistors J. Threshold voltage modeling under size quantization for ultra-thin silicon double-gate metal-oxide-semiconductor field-effect transistor GaN metal-oxide-semiconductor field-effect transistor inversion channel mobility modeling Modeling ...

متن کامل

Gate Tunneling Current Calculation of Nanoscale MOSFETs with a Unified Quantum Correction SPICE Model

In this paper, an analytical quantum correction model for ultrathin oxide MOSFET devices is proposed. With this novel SPICE-compatible model, the gate tunneling current is precisely calculated without any complicated quantum mechanical models. The proposed model is optimized with respect to (i) the position of the charge concentration peak, (ii) the maximum of the charge concentration, (iii) th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009