Formation of a dihydroxy metabolite of phenytoin in human liver microsomes/cytosol: roles of cytochromes P450 2C9, 2C19, and 3A4.

نویسندگان

  • T Komatsu
  • H Yamazaki
  • S Asahi
  • E M Gillam
  • F P Guengerich
  • M Nakajima
  • T Yokoi
چکیده

Formation of four oxidative metabolites from the anticonvulsant drug phenytoin (DPH) catalyzed by human liver microsomal cytochrome P450 (P450) enzymes was determined simultaneously. Under the conditions in which linearity for formation of 4'-hydroxylated DPH (4'-HPPH; main metabolite) was observed, human liver cytosol increased microsome-mediated DPH oxidation. 3',4'-Dihydroxylated product (3', 4'-diHPPH) formation was 10 to 40% of total DPH oxidation in the presence of liver cytosol. 3'-Hydroxy DPH formation was catalyzed by only one of the human liver microsomal samples examined and 3', 4'-dihydrodiol formation could not be detected in all samples. In the presence of liver cytosol, 3',4'-diHPPH formation activity from 100 microM 4'-HPPH was correlated with testosterone 6beta-hydroxylation activity and CYP3A4 content. However, 3', 4'-diHPPH formation using 1 or 10 microM 4'-HPPH as a substrate was not correlated with contents of any P450s or marker activities. Of 10 cDNA-expressed human P450 enzymes examined, CYP2C19, CYP2C9, and CYP3A4 catalyzed 3',4'-diHPPH formation from the primary hydroxylated metabolites (3'-hydroxy-DPH and 4'-HPPH). Fluvoxamine and anti-CYP2C antibody inhibited 3',4'-diHPPH formation from 10 microM 4'-HPPH in a human liver sample that contained relatively high levels of CYP2C, whereas ketoconazole and anti-CYP3A antibody showed inhibitory effects on the activities in liver microsomal samples in which CYP3A4 levels were relatively high. These results suggest that CYP2C9, CYP2C19, and CYP3A4 all have catalytic activities in 3',4'-diHPPH formation from primary hydroxylated metabolites in human liver and that the hepatic contents of these three P450 forms determine which P450 enzymes play major roles of DPH oxidation in individual humans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenytoin metabolism by human cytochrome P450: involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation.

The anticonvulsant phenytoin (5,5-diphenylhydantoin) provokes a skin rash in 5 to 10% of patients, which heralds the start of an idiosyncratic reaction that may result from covalent modification of normal self proteins by reactive drug metabolites. Phenytoin is metabolized by cytochrome P450 (P450) enzymes primarily to 5-(p-hydroxyphenyl-),5-phenylhydantoin (HPPH), which may be further metaboli...

متن کامل

Involvement of multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar.

Muraglitazar (Pargluva), a dual alpha/gamma peroxisome proliferator-activated receptor activator, has both glucose- and lipid-lowering effects in animal models and in patients with diabetes. The human major primary metabolic pathways of muraglitazar include acylglucuronidation, aliphatic/aryl hydroxylation, and O-demethylation. This study describes the identification of human cytochrome P450 (P...

متن کامل

Relative contributions of the five major human cytochromes P450, 1A2, 2C9, 2C19, 2D6, and 3A4, to the hepatic metabolism of the proteasome inhibitor bortezomib.

VELCADE (bortezomib, PS-341), reversibly inhibits the 20S proteasome and exhibits cytotoxic and antitumor activities. Pretreatment of cancer cells with bortezomib increases the chemosensitivity of these cells, suggesting that bortezomib may be used in combination chemotherapy. The relative contributions of the five major human cytochromes P450 (P450s), 1A2, 2C9, 2C19, 2D6, and 3A4 (the focus of...

متن کامل

In vitro biotransformation of sildenafil (Viagra): identification of human cytochromes and potential drug interactions.

The in vitro biotransformation of sildenafil to its major circulating metabolite, UK-103,320, was studied in human liver microsomes and in microsomes containing heterologously expressed human cytochromes. In human liver microsomes, the mean K(m) (+/-S.E. ) was 14.4 +/- 2.0 microM. A screen of the chemical inhibitors omeprazole (10 microM), quinidine (10 microM), sulfaphenazole (10 microM), and ...

متن کامل

Stereo-selective metabolism of methadone by human liver microsomes and cDNA-expressed cytochrome P450s: a reconciliation.

In vitro metabolism of methadone was investigated in cytochrome P450 (CYP) supersomes and phenotyped human liver microsomes (HLMs) to reconcile past findings on CYP involvement in stereo-selective metabolism of methadone. Racaemic methadone was used for incubations; (R)- and (S)-methadone turnover and (R)- and (S)-EDDP formation were determined using chiral liquid chromatography-tandem mass spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 28 11  شماره 

صفحات  -

تاریخ انتشار 2000