Dynamic magnetic resonance imaging method based on golden-ratio cartesian sampling and compressed sensing
نویسندگان
چکیده
Dynamic magnetic resonance imaging (DMRI) is used to noninvasively trace the movements of organs and the process of drug delivery. The results can provide quantitative or semiquantitative pathology-related parameters, thus giving DMRI great potential for clinical applications. However, conventional DMRI techniques suffer from low temporal resolution and long scan time owing to the limitations of the k-space sampling scheme and image reconstruction algorithm. In this paper, we propose a novel DMRI sampling scheme based on a golden-ratio Cartesian trajectory in combination with a compressed sensing reconstruction algorithm. The results of two simulation experiments, designed according to the two major DMRI techniques, showed that the proposed method can improve the temporal resolution and shorten the scan time and provide high-quality reconstructed images.
منابع مشابه
Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملAccelerated 3D self-gated cardiac cine imaging at 3T using a tiny golden angle and compressed sensing
Background 3D self-gated (SG) cine imaging with TrueFISP not only provides excellent contrast between myocardium and blood, but also eliminates the need for ECG set up and permits free-breathing acquisitions [1]. However, such Cartesian sampling-based techniques are commonly used at 1.5 T due to the eddy current and SAR problems as well as time-consuming on data acquisition under the Nyquist sa...
متن کاملGolden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI.
PURPOSE To develop a fast and flexible free-breathing dynamic volumetric MRI technique, iterative Golden-angle RAdial Sparse Parallel MRI (iGRASP), that combines compressed sensing, parallel imaging, and golden-angle radial sampling. METHODS Radial k-space data are acquired continuously using the golden-angle scheme and sorted into time series by grouping an arbitrary number of consecutive sp...
متن کاملOptimized Sampling Patterns for Practical Compressed MRI
The performance of compressed sensing (CS) algorithms is dependent on the sparsity level of the underlying signal, the type of sampling pattern used and the reconstruction method applied. The higher the incoherence of the sampling pattern used for undersampling, less aliasing will be noticeable in the aliased signal space, resulting in better CS reconstruction. In this work, based on point spre...
متن کاملCompressed Sensing-Based MRI Reconstruction Using Complex Double-Density Dual-Tree DWT
Undersampling k-space data is an efficient way to speed up the magnetic resonance imaging (MRI) process. As a newly developed mathematical framework of signal sampling and recovery, compressed sensing (CS) allows signal acquisition using fewer samples than what is specified by Nyquist-Shannon sampling theorem whenever the signal is sparse. As a result, CS has great potential in reducing data ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018