The molecular scaffold kinase suppressor of Ras 1 (KSR1) regulates adipogenesis.

نویسندگان

  • Robert L Kortum
  • Diane L Costanzo
  • Jamie Haferbier
  • Steven J Schreiner
  • Gina L Razidlo
  • Ming-Hoi Wu
  • Deanna J Volle
  • Toshiyuki Mori
  • Hiroshi Sakaue
  • Nina V Chaika
  • Oleg V Chaika
  • Robert E Lewis
چکیده

Mitogen-activated protein kinase pathways are implicated in the regulation of cell differentiation, although their precise roles in many differentiation programs remain elusive. The Raf/MEK/extracellular signal-regulated kinase (ERK) kinase cascade has been proposed to both promote and inhibit adipogenesis. Here, we titrate expression of the molecular scaffold kinase suppressor of Ras 1 (KSR1) to regulate signaling through the Raf/MEK/ERK/p90 ribosomal S6 kinase (RSK) kinase cascade and show how it determines adipogenic potential. Deletion of KSR1 prevents adipogenesis in vitro, which can be rescued by introduction of low levels of KSR1. Appropriate levels of KSR1 coordinate ERK and RSK activation with C/EBPbeta synthesis leading to the phosphorylation and stabilization of C/EBPbeta at the precise moment it is required within the adipogenic program. Elevated levels of KSR1 expression, previously shown to enhance cell proliferation, promote high, sustained ERK activation that phosphorylates and inhibits peroxisome proliferator-activated receptor gamma, inhibiting adipogenesis. Titration of KSR1 expression reveals how a molecular scaffold can modulate the intensity and duration of signaling emanating from a single pathway to dictate cell fate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The molecular scaffold kinase suppressor of Ras 1 is a modifier of RasV12-induced and replicative senescence.

In primary mouse embryo fibroblasts (MEFs), oncogenic Ras induces growth arrest via Raf/MEK/extracellular signal-regulated kinase (ERK)-mediated activation of the p19ARF/p53 and INK4/Rb tumor suppressor pathways. Ablation of these same pathways causes spontaneous immortalization in MEFs, and oncogenic transformation by Ras requires ablation of one or both of these pathways. We show that Kinase ...

متن کامل

Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras

Many cancers, including those of the colon, lung, and pancreas, depend upon the signaling pathways induced by mutated and constitutively active Ras. The molecular scaffolds Kinase Suppressor of Ras 1 and 2 (KSR1 and KSR2) play potent roles in promoting Ras-mediated signaling through the Raf/MEK/ERK kinase cascade. Here we summarize the canonical role of KSR in cells, including its central role ...

متن کامل

Kinase suppressor of Ras 2 (KSR2) regulates tumor cell transformation via AMPK.

Kinase suppressor of Ras 1 (KSR1) and KSR2 are scaffolds that promote extracellular signal-regulated kinase (ERK) signaling but have dramatically different physiological functions. KSR2(-/-) mice show marked deficits in energy expenditure that cause obesity. In contrast, KSR1 disruption has inconsequential effects on development but dramatically suppresses tumor formation by activated Ras. We e...

متن کامل

Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR).

Kinase suppressor of Ras (KSR) is a conserved component of the Ras pathway that acts as a molecular scaffold to promote signal transmission from Raf-1 to MEK and MAPK. All KSR proteins contain a conserved cysteine-rich C1 domain, and studies have implicated this domain in the regulation of KSR1 subcellular localization and function. To further elucidate the biological role of the KSR1 C1 domain...

متن کامل

Protein Phosphatase 2A Positively Regulates Ras Signaling by Dephosphorylating KSR1 and Raf-1 on Critical 14-3-3 Binding Sites

BACKGROUND Kinase Suppressor of Ras (KSR) is a conserved component of the Ras pathway that acts as a molecular scaffold to facilitate signal transmission through the MAPK cascade. Although recruitment of KSR1 from the cytosol to the plasma membrane is required for its scaffolding function, the precise mechanism(s) regulating the translocation of KSR1 have not been fully elucidated. RESULTS Us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 25 17  شماره 

صفحات  -

تاریخ انتشار 2005