New particle formation from the oxidation of direct emissions of pine seedlings
نویسندگان
چکیده
Measurements of particle formation following the gas phase oxidation of volatile organic compounds (VOCs) emitted by Scots pine (Pinus sylvestris L.) seedlings are reported. Particle formation and condensational growth both from ozone (O3) and hydroxyl radical (OH) initiated oxidation of pine emissions (about 20-120 ppb) were investigated in a smog chamber. During experiments, tetramethylethylene (TME) and 2-butanol were added to control the concentrations of O3 and OH. Particle formation and condensational growth rates were interpreted with a chemical kinetic model. Scots pine emissions mainly included α-pinene, βpinene, 13-carene, limonene, myrcene and β-phellandrene, composing more than 95% of total emissions. Modeled OH concentrations in the O3and OH-induced experiments were on the order of ∼106 molecules cm−3. Our results demonstrate that OH-initiated oxidation of VOCs plays an important role in the nucleation process during the initial new particle formation stage. The highest average particle formation rate of 360 cm−3 s−1 was observed for the OH-dominated nucleation events and the lowest formation rate of less than 0.5 cm−3 s−1 was observed for the case with only O3 present as an oxidant. In contrast to the particle formation process, ozonolysis of monoterpenes appears to be much more efficient to the aerosol growth process following nucleation. Correspondence to: L. Q. Hao ([email protected]) Higher contributions of more oxygenated products to the SOA mass loadings from OH-dominated oxidation systems were found as compared to the ozonolysis systems. Comparison of mass and volume distributions from the aerosol mass spectrometer and differential mobility analyzer yields estimated SOA effective densities of 1.34±0.06 g cm−3 for the OH+O3 oxidation systems and 1.38±0.03 g cm−3 for the O3 dominated chemistry.
منابع مشابه
Direct measurement of particle formation and growth from the oxidation of biogenic emissions
A new facility has been developed to investigate the formation of new particles from the oxidation of volatile organic compounds emitted from vegetation. The facility consists of a biogenic emissions enclosure, an aerosol growth chamber, and the associated instrumentation. Using the facility, new particle formation events have been induced through the reaction of ozone with three different prec...
متن کاملPhotochemical production of aerosols from real plant emissions
Emission of biogenic volatile organic compounds (VOC) which on oxidation form secondary organic aerosols (SOA) can couple the vegetation with the atmosphere and climate. Particle formation from tree emissions was investigated in a new setup: a plant chamber coupled to a reaction chamber for oxidizing the plant emissions and for forming SOA. Emissions from the boreal tree species birch, pine, an...
متن کاملModeling of Combustion and Carbon Oxides Formation in Direct Injection Diesel Engine
When looking at the effects of diesel engine exhaust on the environment, it is important to first look at the composition of the exhaust gases. Over 99.5% of the exhaust gases are a combination of nitrogen, oxygen, carbon dioxide, and water. With the exception of carbon dioxide, which contributes about 5% of the total volume, the diesel engine exhaust consists of elements which are part of...
متن کاملThree-Dimensional Modeling of Combustion Process, Soot and NOx formation In a Direct-injection Diesel Engine
This paper is presented to study the combustion process and emissions in a direct injection diesel engine. Computations are carried out using a three-dimensional model for flows, sprays, combustion and emissions in Diesel engines. Interactions between combustion and emissions with flow field are considered and it is shown that soot mass fraction increases at regions with low turbulence inten...
متن کاملCarbon catalyst derived from Himalayan pine for the C-N coupling of organic molecules leading to pyrrole formation
Carbon catalyst consisting of a hybrid structure made up of amorphous carbon and nanographite was prepared from the leaves of Pinus Roxburghii. The catalyst was prepared through sodium hydroxide and hydrochloric acid treatment of the dried pine leaves; and further functionalized with sulfuric acid treatment to incorporate the acidic functionalities. The synthesized catalyst was characterized by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009