Advances in Variational Bayesian Nonlinear Blind Source Separation
نویسنده
چکیده
Linear data analysis methods such as factor analysis (FA), independent component analysis (ICA) and blind source separation (BSS) as well as state-space models such as the Kalman filter model are used in a wide range of applications. In many of these, linearity is just a convenient approximation while the underlying effect is nonlinear. It would therefore be more appropriate to use nonlinear methods. In this work, nonlinear generalisations of FA and ICA/BSS are presented. The methods are based on a generative model, with a multilayer perceptron (MLP) network to model the nonlinearity from the latent variables to the observations. The model is estimated using variational Bayesian learning. The variational Bayesian method is well-suited for the nonlinear data analysis problems. The approach is also theoretically interesting, as essentially the same method is used in several different fields and can be derived from several different starting points, including statistical physics, information theory, Bayesian statistics, and information geometry. These complementary views can provide benefits for interpretation of the operation of the learning method and its results. Much of the work presented in this thesis consists of improvements that make the nonlinear factor analysis and blind source separation methods faster and more stable, while being applicable to other learning problems as well. The improvements include methods to accelerate convergence of alternating optimisation algorithms such as the EM algorithm and an improved approximation of the moments of a nonlinear transform of a multivariate probability distribution. These improvements can be easily applied to other models besides FA and ICA/BSS, such as nonlinear state-space models. A specialised version of the nonlinear factor analysis method for post-nonlinear mixtures is presented as well.
منابع مشابه
Nonlinear Blind Source Separation by Variational Bayesian Learning
Blind separation of sources from their linear mixtures is a well understood problem. However, if the mixtures are nonlinear, this problem becomes generally very difficult. This is because both the nonlinear mapping and the underlying sources must be learned from the data in a blind manner, and the problem is highly ill-posed without a suitable regularization. In our approach, multilayer percept...
متن کاملUsing Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method
The variational Bayesian nonlinear blind source separation method introduced by Lappalainen and Honkela in 2000 is initialised with linear principal component analysis (PCA). Because of the multilayer perceptron (MLP) network used to model the nonlinearity, the method is susceptible to local minima and therefore sensitive to the initialisation used. As the method is used for nonlinear separatio...
متن کاملState Inference in Variational Bayesian Nonlinear State-Space Models
Nonlinear source separation can be performed by inferring the state of a nonlinear state-space model. We study and improve the inference algorithm in the variational Bayesian blind source separation model introduced by Valpola and Karhunen in 2002. As comparison methods we use extensions of the Kalman filter that are widely used inference methods in tracking and control theory. The results in s...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005