Bio-Inspired Adaptive Cooperative Control of Heterogeneous Robotic Networks
نویسندگان
چکیده
We introduce a new adaptive cooperative control strategy for robotic networks comprised of heterogeneous members. The proposed feedback synchronization exploits an active parameter adaptation strategy as opposed to adaptive parameter estimation of adaptive control theory. Multiple heterogeneous robots or vehicles can coordinate their motions by parameter adaptation analogous to bio-genetic mutation and adaptation. In contrast with fixed gains used by consensus theory, both the tracking control and diffusive coupling gains are automatically computed based on the adaptation law, the synchronization errors, and the tracking errors of heterogeneous robots. The optimality of the proposed adaptive cooperative control is studied via inverse optimal control theory. The proposed adaptive cooperative control can be applied to any network structure. The stability proof, by using a relatively new nonlinear stability tool, contraction theory, shows globally asymptotically synchronized motion of a heterogeneous robotic network. This adaptive cooperative control can be widely applied to cooperative control of unmanned aerial vehicles (UAVs), formation flying spacecraft, and multi-robot systems. Results of the simulation show the effectiveness of the proposed adaptive cooperative control laws especially for a network comprised of heterogeneous members.
منابع مشابه
Dynamic modeling and control of a 4 DOF robotic finger using adaptive-robust and adaptive-neural controllers
In this research, first, kinematic and dynamic equations of a 4-DOF 3-link robotic finger are derived using Denavit-Hartenberg convention and Lagrange’s formulation. To model the muscles, several springs and dampers are placed between the finger links. Then, two advanced controllers, namely adaptive-robust and adaptive-neural, which can control the robotic finger in presence of parametric uncer...
متن کاملHolarchical Systems and Emotional Holons: Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles
The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for ...
متن کاملBiologically Inspired Autonomous Rover Control
Robotic missions beyond 2013 will likely be precursors to a manned habitat deployment on Mars. Such missions require robust control systems for long duration activities. Current single rover missions will evolve into deployment of multiple, heterogeneous cooperating robotic colonies. This paper describes the map-making memory and action selection mechanism of BISMARC (Biologically Inspired Syst...
متن کاملAn Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملOn Self-Optimized Self-Assembling of Heterogeneous Multi-robot Organisms
This chapter is devoted to a bio-inspired self-assembling of heterogeneous robot modules into specific topological configurations. The approach involves several algorithmic inspirations from biological regulatory networks for achieving environmental dependability and considers constraint-based optimization techniques for finding optimal connections between heterogeneous modules. Scalability and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009