The Molecular Basis for Recognition of CD1d/α-Galactosylceramide by a Human Non-Vα24 T Cell Receptor
نویسندگان
چکیده
CD1d-mediated presentation of glycolipid antigens to T cells is capable of initiating powerful immune responses that can have a beneficial impact on many diseases. Molecular analyses have recently detailed the lipid antigen recognition strategies utilized by the invariant Vα24-Jα18 TCR rearrangements of iNKT cells, which comprise a subset of the human CD1d-restricted T cell population. In contrast, little is known about how lipid antigens are recognized by functionally distinct CD1d-restricted T cells bearing different TCRα chain rearrangements. Here we present crystallographic and biophysical analyses of α-galactosylceramide (α-GalCer) recognition by a human CD1d-restricted TCR that utilizes a Vα3.1-Jα18 rearrangement and displays a more restricted specificity for α-linked glycolipids than that of iNKT TCRs. Despite having sequence divergence in the CDR1α and CDR2α loops, this TCR employs a convergent recognition strategy to engage CD1d/αGalCer, with a binding affinity (∼2 µM) almost identical to that of an iNKT TCR used in this study. The CDR3α loop, similar in sequence to iNKT-TCRs, engages CD1d/αGalCer in a similar position as that seen with iNKT-TCRs, however fewer actual contacts are made. Instead, the CDR1α loop contributes important contacts to CD1d/αGalCer, with an emphasis on the 4'OH of the galactose headgroup. This is consistent with the inability of Vα24- T cells to respond to α-glucosylceramide, which differs from αGalCer in the position of the 4'OH. These data illustrate how fine specificity for a lipid containing α-linked galactose is achieved by a TCR structurally distinct from that of iNKT cells.
منابع مشابه
Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens.
Crucial to Natural Killer T (NKT) cell function is the interaction between their T-cell receptor (TCR) and CD1d-antigen complex. However, the diversity of the NKT cell repertoire and the ensuing interactions with CD1d-antigen remain unclear. We describe an atypical population of CD1d-α-galactosylceramide (α-GalCer)-reactive human NKT cells that differ markedly from the prototypical TRAV10-TRAJ1...
متن کاملAvidity of CD1d-ligand-receptor ternary complex contributes to T-helper 1 (Th1) polarization and anticancer efficacy.
Invariant natural killer T cell (NKT) cells (iNKT cells) produce both T-helper 1 (Th1) and T-helper 2 cytokines in response to α-Galactosylceramide (α-GalCer) stimulation and are thought to be the important effectors in the regulation of both innate and adaptive immunity involved in autoimmune disorders, microbial infections, and cancers. However, the anticancer effects of α-GalCer were limited...
متن کاملA naive-like population of human CD1d-restricted T cells expressing intermediate levels of promyelocytic leukemia zinc finger.
Rare CD1d-α-galactosylceramide-specific T cells that do not express the invariant Vα24 chain of human NKT cells were recently identified after expansion in vitro with the lipid Ag, but their phenotype and frequency in vivo and lineage relationship with NKT cells could not be elucidated. By using a CD1d tetramer-based method to enrich these cells from fresh peripheral blood, we demonstrated thei...
متن کاملRelationships between Th1 or Th2 iNKT Cell Activity and Structures of CD1d-Antigen Complexes: Meta-analysis of CD1d-Glycolipids Dynamics Simulations
A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius). Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated wi...
متن کاملCD1d-mediated Recognition of an α-Galactosylceramide by Natural Killer T Cells Is Highly Conserved through Mammalian Evolution
Natural killer (NK) T cells are a lymphocyte subset with a distinct surface phenotype, an invariant T cell receptor (TCR), and reactivity to CD1. Here we show that mouse NK T cells can recognize human CD1d as well as mouse CD1, and human NK T cells also recognize both CD1 homologues. The unprecedented degree of conservation of this T cell recognition system suggests that it is fundamentally imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2012