Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp.
نویسندگان
چکیده
We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30,000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen irradiance standard lamp.
منابع مشابه
Facility for spectral irradiance and radiance responsivity calibrations using uniform sources.
Detectors have historically been calibrated for spectral power responsivity at the National Institute of Standards and Technology by using a lamp-monochromator system to tune the wavelength of the excitation source. Silicon detectors can be calibrated in the visible spectral region with combined standard uncertainties at the 0.1% level. However, uncertainties increase dramatically when measurin...
متن کاملSHOCK TEMPERATURES OF PREHEATED MgO
Shock temperature measurements via optical pyrometry are being conducted on <100> single-crystal MgO preheated beftire compression to 1905-1924 K. Planar shocks were generated by impacting hot Mo(driver plate)-MgO targets with Mo or Ta flyers launched by the Caltech two-stage light-gas gun up to 6.6 km/s. Quasi-brightness temperature was measured with 2-3% uncertainty by a 6-channel optical pyr...
متن کاملComparison of laser-based and conventional calibrations of sun photometers
Sun photometers are used to characterize the radiative properties of the atmosphere. They measure both the incident solar irradiance as well as the sky radiance (from scattered incident flux). Global networks of sun photometers provide data products such as aerosol optical thickness derived from these measurements. Instruments are typically calibrated for irradiance responsivity by cross-calibr...
متن کاملOptical Radiation Measurements Based on Detector Standards
A near-IR radiometer standard with similar performance to silicon trap-detectors has been developed to calibrate detectors and radiometers for absolute spectral power, irradiance, and radiance responsivities between 950 nm and 1650 nm. The new radiometer standard is utilized at the Spectral Irradiance and Radiance Responsivity Calibrations using Uniform Sources (SIRCUS) which is the reference c...
متن کاملRadiometer standard for absolute responsivity calibrations from 950nm to 1650nm
A near-IR radiometer standard with similar performance to silicon trap detectors has been developed to calibrate detectors and radiometers for absolute spectral power, irradiance and radiance responsivities between 950 nm and 1650 nm. The new radiometer standard is utilized at the Spectral Irradiance and Radiance Responsivity Calibrations using Uniform Sources (SIRCUS) which is the reference ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Review of scientific instruments
دوره 86 10 شماره
صفحات -
تاریخ انتشار 2015