Modified Cp Criterion for Optimizing Ridge and SmoothParameters in the MGR Estimator for the Nonparametric GMANOVA Model

نویسنده

  • Isamu Nagai
چکیده

Longitudinal trends of observations can be estimated using the generalized multivariate analysis of variance (GMANOVA) model proposed by [10]. In the present paper, we consider estimating the trends nonparametrically using known basis functions. Then, as in nonparametric regression, an overfitting problem occurs. [13] showed that the GMANOVA model is equivalent to the varying coefficient model with non-longitudinal covariates. Hence, as in the case of the ordinary linear regression model, when the number of covariates becomes large, the estimator of the varying coefficient becomes unstable. In the present paper, we avoid the overfitting problem and the instability problem by applying the concept behind penalized smoothing spline regression and multivariate generalized ridge regression. In addition, we propose two criteria to optimize hyper parameters, namely, a smoothing parameter and ridge parameters. Finally, we compare the ordinary least square estimator and the new estimator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Ridge Estimator for the Partially Linear Model under Right-Censored Data

Objective: This paper aims to introduce a modified kernel-type ridge estimator for partially linear models under randomly-right censored data. Such models include two main issues that need to be solved: multi-collinearity and censorship. To address these issues, we improved the kernel estimator based on synthetic data transformation and kNN imputation techniques. The key idea of this paper is t...

متن کامل

Selection of Model Selection Criteria for Multivariate Ridge Regression

In the present study, we consider the selection of model selection criteria for multivariate ridge regression. There are several model selection criteria for selecting the ridge parameter in multivariate ridge regression, e.g., the Cp criterion and the modified Cp (MCp) criterion. We propose the generalized Cp (GCp) criterion, which includes Cp andMCp criteria as special cases. The GCp criterio...

متن کامل

Ridge-type regularization method for questionnaire data analysis

In questionnaire studies for evaluating objects such as manufacturing products, evaluators are required to respond to several evaluation items for the objects. When the number of objects is large, a part of the objects is often assigned randomly to each evaluator, and the response becomes a matrix with missing components. To handle this kind of data, we consider a model by using a dummy matrix ...

متن کامل

An unbiased Cp criterion for multivariate ridge regression

Mallows’ Cp statistic is widely used for selecting multivariate linear regression models. It can be considered to be an estimator of a risk function based on an expected standardized mean square error of prediction. Fujikoshi and Satoh (1997) have proposed an unbiased Cp criterion (called modified Cp; MCp) for selecting multivariate linear regression models. In this paper, the unbiased Cp crite...

متن کامل

A New Ridge Estimator in Linear Measurement Error Model with Stochastic Linear Restrictions

In this paper, we propose a new ridge-type estimator called the new mixed ridge estimator (NMRE) by unifying the sample and prior information in linear measurement error model with additional stochastic linear restrictions. The new estimator is a generalization of the mixed estimator (ME) and ridge estimator (RE). The performances of this new estimator and mixed ridge estimator (MRE) against th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011