Can IRT Solve the Missing Data Problem in Test Equating?
نویسندگان
چکیده
In this paper test equating is considered as a missing data problem. The unobserved responses of the reference population to the new test must be imputed to specify a new cutscore. The proportion of students from the reference population that would have failed the new exam and those having failed the reference exam are made approximately the same. We investigate whether item response theory (IRT) makes it possible to identify the distribution of these missing responses and the distribution of test scores from the observed data without parametric assumptions for the ability distribution. We show that while the score distribution is not fully identifiable, the uncertainty about the score distribution on the new test due to non-identifiability is very small. Moreover, ignoring the non-identifiability issue and assuming a normal distribution for ability may lead to bias in test equating, which we illustrate in simulated and empirical data examples.
منابع مشابه
Flow Shop Scheduling Problem with Missing Operations: Genetic Algorithm and Tabu Search
Flow shop scheduling problem with missing operations is studied in this paper. Missing operations assumption refers to the fact that at least one job does not visit one machine in the production process. A mixed-binary integer programming model has been presented for this problem to minimize the makespan. The genetic algorithm (GA) and tabu search (TS) are used to deal with the optimization...
متن کاملPractical Consequences of Item Response Theory Model Misfit in the Context of Test Equating with Mixed-Format Test Data
In item response theory (IRT) models, assessing model-data fit is an essential step in IRT calibration. While no general agreement has ever been reached on the best methods or approaches to use for detecting misfit, perhaps the more important comment based upon the research findings is that rarely does the research evaluate IRT misfit by focusing on the practical consequences of misfit. The stu...
متن کاملIRT Observed-Score Kernel Equating with the R Package kequate
The R package kequate enables observed-score equating using the kernel method of test equating. We present the recent developments of kequate, which provide additional support for item-response theory observed score equating using 2-PL and 3-PL models in the equivalent groups design and non-equivalent groups with anchor test design using chain equating. The implementation also allows for local ...
متن کاملStandard Error Estimation of 3PL IRT True Score Equating With an MCMCMethod
A Markov chain Monte Carlo (MCMC) method and a bootstrap method were compared in the estimation of standard errors of item response theory (IRT) true score equating. Three test form relationships were examined: parallel, tauequivalent, and congeneric. Data were simulated based on Reading Comprehension and Vocabulary tests of the Iowa Tests of Basic Skills1. For parallel and congeneric test form...
متن کاملA method to solve the problem of missing data, outlier data and noisy data in order to improve the performance of human and information interaction
Abstract Purpose: Errors in data collection and failure to pay attention to data that are noisy in the collection process for any reason cause problems in data-based analysis and, as a result, wrong decision-making. Therefore, solving the problem of missing or noisy data before processing and analysis is of vital importance in analytical systems. The purpose of this paper is to provide a metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015