Standard Fuzzy Model Identification using Gradient Methods
نویسندگان
چکیده
Identification of unknown system by training the parameters adaptively using different fuzzy models has been proven an interesting research area over last few decades. The objective of this paper is to identify a standard fuzzy system using different gradient methods and discuss their characteristics. Approach of this work is to calculate the gradient of the appropriate cost function to minimize the error by updating the parameters and estimate the system perfectly. Results of these methods are compared on the basis of best approximation and fast convergence.
منابع مشابه
Fuzzy Model Identification:A Review and Comparison of Type-1 and Type-2 Fuzzy Systems
Abstract. Recently, a number of extensions to classical fuzzy logic systems (type-1 fuzzy logic systems) have been attracting interest. One of the most widely used extensions is the interval type-2 fuzzy logic systems. An interval type-2 TSK fuzzy logic system can be obtained by considering the membership functions of its existed type-1 counterpart as primary membership functions and assigning ...
متن کاملIdentification of Cement Rotary Kiln in Noisy Condition using Takagi-Sugeno Neuro-fuzzy System
Cement rotary kiln is the main part of cement production process that have always attracted many researchers’ attention. But this complex nonlinear system has not been modeled efficiently which can make an appropriate performance specially in noisy condition. In this paper Takagi-Sugeno neuro-fuzzy system (TSNFS) is used for identification of cement rotary kiln, and gradient descent (GD) algori...
متن کاملTrajectory Estimation and Control of Vehicle using Neuro-Fuzzy Technique
Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Backpropagation gradient descent method was performed to train the ANFIS system. The performance of the ...
متن کاملUsing Neuro-fuzzy Technique
Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Back-propagation gradient descent method was performed to train the ANFIS system. The performance of the...
متن کاملParameter Optimization for Takagi-sugeno Fuzzy Models — Lessons Learnt
This article describes an approach to automatically build a Takagi-Sugeno fuzzy model (TSK-model) based on a set of input-output data (system identification). Identifying rule-based fuzzy models consists of two parts: structure modeling, i. e. determining the number of rules and input variables involved respectively, and parameter optimization, i. e. optimizing the rules consequences and the lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013