Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine
نویسندگان
چکیده
Recent research in the vaccine and immunotherapy fields has revealed that biomaterials have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. Intriguingly, new studies reveal these responses are influenced by the physicochemical properties of the material. Nearly all of this work has been done in the vaccine and immunotherapy fields, but there is tremendous opportunity to apply this same knowledge to tissue engineering and regenerative medicine. This review discusses recent findings that reveal how material properties-size, shape, chemical functionality-impact immune response, and links these changes to emerging opportunities in tissue engineering and regenerative medicine. We begin by discussing what has been learned from studies conducted in the contexts of vaccines and immunotherapies. Next, research is highlighted that elucidates the properties of materials that polarize innate immune cells, including macrophages and dendritic cells, toward either inflammatory or wound healing phenotypes. We also discuss recent studies demonstrating that scaffolds used in tissue engineering applications can influence cells of the adaptive immune system-B and T cell lymphocytes-to promote regenerative tissue microenvironments. Through greater study of the intrinsic immunogenic features of implantable materials and scaffolds, new translational opportunities will arise to better control tissue engineering and regenerative medicine applications.
منابع مشابه
Nanosized biomaterials for regenerative medicine
This review discusses recent developments in the field of nanosized biomaterials and their use in tissue regeneration approaches. The aim is to provide an overview of the research focused on nanoparticle-based strategies to stimulate regeneration. In particular, nanoparticles improve the regenerative capabilities of biomaterials offering ways to control surface and mechanical properties. Moreov...
متن کاملNanosized biomaterials for regenerative medicine
This review discusses recent developments in the field of nanosized biomaterials and their use in tissue regeneration approaches. The aim is to provide an overview of the research focused on nanoparticle-based strategies to stimulate regeneration. In particular, nanoparticles improve the regenerative capabilities of biomaterials offering ways to control surface and mechanical properties. Moreov...
متن کاملApplication of Nanoscaffolds and Mesenchymal Stem Cells in Tissue Engineering
Stem cell research has obtained much prominence in recent years for its therapeutic potential in dealing with serious diseases, many of which are essentially incurable by routine therapies. Mesenchymal stem cells with pluripotency and immunomodulatory properties are suitable candidates for tissue engineering and regenerative medicine. Today, nanofibrous scaffolds are widely used in tissue en...
متن کاملMesenchymal Stem Cells: Interactions with Immune Cells and Immunosuppressive-Immunomodulatory Properties
Abstract Background and Objectives Recently, mesenchymal stem cells have attracted much attention in regenerative medicine and cell-based therapies. Mesenchymal stem cells are used in regenerative medicine mainly based on their capacity to differentiate into several cell lineages, low immunogenicity, and in particular their anti-inflammatory and immunosuppressive-immunomodulatory properties. ...
متن کاملBiodegradable Polyphosphazene Biomaterials for Tissue Engineering and Delivery of Therapeutics
Degradable biomaterials continue to play a major role in tissue engineering and regenerative medicine as well as for delivering therapeutic agents. Although the chemistry of polyphosphazenes has been studied extensively, a systematic review of their applications for a wide range of biomedical applications is lacking. Polyphosphazenes are synthesized through a relatively well-known two-step reac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2017