Human Identification Based on Extracted Gait Features

نویسندگان

  • Hu Ng
  • Hau-Lee Tong
  • Wooi-Haw Tan
  • Pei-Fen Chong
  • Junaidi Abdullah
چکیده

This paper presents a human identification system based on automatically extracted gait features. The proposed approach consists of three parts: extraction of human gait features from enhanced human silhouette, smoothing process on extracted gait features and classification by three classification techniques: fuzzy knearest neighbour, linear discriminate analysis and linear support vector machine. The gait features extracted are height, width, crotch height, step-size of the human silhouette and joint trajectories. To improve the classification performance, two of these extracted gait features are smoothened before the classification process in order to alleviate the effect of outliers. The proposed approach has been applied on SOTON covariate database, which comprises eleven subjects walking bidirectional in a controlled indoor environment with thirteen different covariate factors that vary in terms of apparel, walking speed, shoe types and carrying objects. From the experimental results, it can be concluded that the proposed approach is effective in human identification from a distance over various covariate factors and different classification techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gait Analysis for Recognition and Classification

This paper describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple features such as moments extracted from orthogonal view video silhouettes of human walking motion. Despite its simplicity, the resulting feature vector contains enough information to perform well on human identification and gender clas...

متن کامل

A Novel Approach on Silhouette Based Human Motion Analysis for Gait Recognition

This paper presents a novel view independent approach on silhouette based human motion analysis for gait recognition applications. Spatio-temporal 1-D signals based on the differences between the outer of binarized silhouette of a motion object and a bounding box placed around silhouette are chosen as the basic image features called the distance vectors. The distance vectors are extracted using...

متن کامل

A New Attempt to Silhouette-Based Gait Recognition for Human Identification

Human identification at distance by analysis of gait patterns extracted from video has recently become very popular research in biometrics. This paper presents multi-projections based approach to extract gait patterns for human recognition. Binarized silhouette of a motion object is represented by 1-D signals which are the basic image features called the distance vectors. The distance vectors a...

متن کامل

Gait Correlation Analysis Based Human Identification

Human gait identification aims to identify people by a sequence of walking images. Comparing with fingerprint or iris based identification, the most important advantage of gait identification is that it can be done at a distance. In this paper, silhouette correlation analysis based human identification approach is proposed. By background subtracting algorithm, the moving silhouette figure can b...

متن کامل

Gait analysis for classification

This thesis describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple localized image features such as moments extracted from orthogonal view video silhouettes of human walking motion. A suite of time-integration methods, spanning a range of coarseness of time aggregation and modeling of feature distrib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011