Circular spectropolarimetric sensing of chiral photosystems in decaying leaves
نویسندگان
چکیده
Circular polarization spectroscopy has proven to be an indispensable tool in photosynthesis research and (bio)-molecular research in general. Oxygenic photosystems typically display an asymmetric Cotton effect around the chlorophyll absorbance maximum with a signal ≤ 1%. In vegetation, these signals are the direct result of the chirality of the supramolecular aggregates. The circular polarization is thus directly influenced by the composition and architecture of the photosynthetic macrodomains, and is thereby linked to photosynthetic functioning. Although ordinarily measured only on a molecular level, we have developed a new spectropolarimetric instrument, TreePol, that allows for both laboratory and in-the-field measurements. Through spectral multiplexing, TreePol is capable of fast measurements with a sensitivity of ∼ 1∗10−4 and is therefore suitable of non-destructively probing the molecular architecture of whole plant leaves. We have measured the chiroptical evolution of Hedera helix leaves for a period of 22 days. Spectrally resolved circular polarization measurements (450-900 nm) on whole leaves in transmission exhibit a strong decrease in the polariza∗Corresponding author Email address: [email protected] (C.H. Lucas Patty) Preprint submitted to Journal of Quantative Spectroscopy & Radiative TransferJanuary 6, 2017 ar X iv :1 70 1. 01 29 7v 1 [ qbi o. B M ] 5 J an 2 01 7 tion signal over time after plucking, which we accredit to the deterioration of chiral macro-aggregates. Chlorophyll a levels measured over the same period by means of UV-Vis absorption and fluorescence spectroscopy showed a much smaller decrease. With these results we are able to distinguish healthy from deteriorating leaves. Hereby we indicate the potency of circular polarization spectroscopy on whole and intact leaves as a nondestructive tool for structural and plant stress assessment. Additionally, we underline the establishment of circular polarization signals as remotely accessible means of detecting the presence of extraterrestrial life.
منابع مشابه
Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods
An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...
متن کاملRemote Sensing of Chiral Signatures on Mars
We describe circular polarization as a remote sensing diagnostic of chiral signatures which may be applied to Mars. The remarkable phenomenon of homochirality provides a unique biosignature which can be amenable to remote sensing through circular polarization spectroscopy. The natural tendency of microbes to congregate in close knit communities would be beneficial for such a survey. Observation...
متن کاملCircular dichroism based refractive index sensing using chiral metamaterials.
A new strategy to improve the sensing ability of localized surface plasmon resonance sensors is presented. By employing chiral plasmonic nanostructures, circularly polarized differential transmittance can show enhanced sensing performance over circularly polarized transmittance under certain conditions.
متن کاملSensitivity of Chirowaveguides to Circular Birefringence by First Order Perturbation Theory
Planar waveguides with an isotropic chiral core, called chirowaveguides, support the propagation of elliptically polarized modes, making them natural candidates for chiral sensing. We investigate the potential of chirowaveguides as optical sensors responding to changes in the circular birefringence of a medium covering the waveguide. Using first order approximations, we derive expressions for t...
متن کاملQuantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles.
Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecule...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017