Myosin IIB Activity and Phosphorylation Status Determines Dendritic Spine and Post-Synaptic Density Morphology

نویسندگان

  • Jennifer L. Hodges
  • Karen Newell-Litwa
  • Hannelore Asmussen
  • Miguel Vicente-Manzanares
  • Alan Rick Horwitz
چکیده

Dendritic spines in hippocampal neurons mature from a filopodia-like precursor into a mushroom-shape with an enlarged post-synaptic density (PSD) and serve as the primary post-synaptic location of the excitatory neurotransmission that underlies learning and memory. Using myosin II regulatory mutants, inhibitors, and knockdowns, we show that non-muscle myosin IIB (MIIB) activity determines where spines form and whether they persist as filopodia-like spine precursors or mature into a mushroom-shape. MIIB also determines PSD size, morphology, and placement in the spine. Local inactivation of MIIB leads to the formation of filopodia-like spine protrusions from the dendritic shaft. However, di-phosphorylation of the regulatory light chain on residues Thr18 and Ser19 by Rho kinase is required for spine maturation. Inhibition of MIIB activity or a mono-phosphomimetic mutant of RLC similarly prevented maturation even in the presence of NMDA receptor activation. Expression of an actin cross-linking, non-contractile mutant, MIIB R709C, showed that maturation into a mushroom-shape requires contractile activity. Loss of MIIB also leads to an elongated PSD morphology that is no longer restricted to the spine tip; whereas increased MIIB activity, specifically through RLC-T18, S19 di-phosphorylation, increases PSD area. These observations support a model whereby myosin II inactivation forms filopodia-like protrusions that only mature once NMDA receptor activation increases RLC di-phosphorylation to stimulate MIIB contractility, resulting in mushroom-shaped spines with an enlarged PSD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Critical Role for Myosin IIB in Dendritic Spine Morphology and Synaptic Function

Dendritic spines show rapid motility and plastic morphology, which may mediate information storage in the brain. It is presently believed that polymerization/depolymerization of actin is the primary determinant of spine motility and morphogenesis. Here, we show that myosin IIB, a molecular motor that binds and contracts actin filaments, is essential for normal spine morphology and dynamics and ...

متن کامل

Allicin attenuates tunicamycin-induced cognitive deficits in rats via its synaptic plasticity regulatory activity

Objective(s): To illuminate the functional effects of allicin on rats with cognitive deficits induced by tunicamycin (TM) and the molecular mechanism of this process. Materials and Methods: 200–250 g male SD rats were divided into three groups at random: control group (n=12), TM group (5 μl, 50 μM, i.c.v, n=12), and allicin treatment group (180 mg/kg/d with chow diet, n=12). After 16 weeks of a...

متن کامل

Regulation of synapse structure and function by distinct myosin II motors.

Ongoing synaptic function and rapid, bidirectional plasticity are both controlled by regulatory mechanisms within dendritic spines. Spine actin dynamics maintain synapse structure and function, and cytoskeletal rearrangements in these structures trigger structural and functional plasticity. Therefore, proteins that interact with actin filaments are attractive candidates to regulate synaptic act...

متن کامل

Non-muscle myosin IIB-like immunoreactivity is present at the drebrin-binding cytoskeleton in neurons.

Dendritic spines are extremely motile, providing a structural mechanism for synaptic plasticity. Actin-myosin interaction is thought to be responsible for the change in the shape of spine. We have already reported that drebrin, an actin-binding protein, inhibits actin-myosin interaction and is enriched in the dendritic spine of mature neurons. In this study, we prepared the actin cytoskeleton o...

متن کامل

ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity

RhoGTPases organize the actin cytoskeleton to generate diverse polarities, from front-back polarity in migrating cells to dendritic spine morphology in neurons. For example, RhoA through its effector kinase, RhoA kinase (ROCK), activates myosin II to form actomyosin filament bundles and large adhesions that locally inhibit and thereby polarize Rac1-driven actin polymerization to the protrusions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011