Towards Randomized Testing of $q$-Monomials in Multivariate Polynomials

نویسندگان

  • Shenshi Chen
  • Yaqing Chen
  • Quanhai Yang
چکیده

Given any fixed integer q ≥ 2, a q-monomial is of the format x1 i1 x s2 i2 · · · x st it such that 1 ≤ sj ≤ q − 1, 1 ≤ j ≤ t. q-monomials are natural generalizations of multilinear monomials. Recent research on testing multilinear monomials and q-monomials for prime q in multivariate polynomials relies on the property that Zq is a field when q ≥ 2 is prime. When q > 2 is not prime, it remains open whether the problem of testing q-monomials can be solved in some compatible complexity. In this paper, we present a randomized O(7.15) algorithm for testing q-monomials of degree k that are found in a multivariate polynomial that is represented by a tree-like circuit with a polynomial size, thus giving a positive, affirming answer to the above question. Our algorithm works regardless of the primality of q and improves upon the time complexity of the previously known algorithm for testing q-monomials for prime q > 7.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for Testing Monomials in Multivariate Polynomials

This paper is our second step towards developing a theory of testing monomials in multivariate polynomials. The central question is to ask whether a polynomial represented by an arithmetic circuit has some types of monomials in its sum-product expansion. The complexity aspects of this problem and its variants have been investigated in our first paper by Chen and Fu (2010), laying a foundation f...

متن کامل

Monomial Testing and Applications

In this paper, we devise two algorithms for the problem of testing q-monomials of degree k in any multivariate polynomial represented by a circuit, regardless of the primality of q. One is an O(2) time randomized algorithm. The other is an O(12.8) time deterministic algorithm for the same q-monomial testing problem but requiring the polynomials to be represented by tree-like circuits. Several a...

متن کامل

Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials

This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ΠΣΠ polynomial. We first prove that the first problem is #P-hard and then devise a O∗(3ns(n)) upper bound for this problem f...

متن کامل

The Complexity of Testing Monomials in Multivariate Polynomials

The work in this paper is to initiate a theory of testing monomials in multivariate polynomials. The central question is to ask whether a polynomial represented by certain economically compact structure has a multilinear monomial in its sum-product expansion. The complexity aspects of this problem and its variants are investigated with two folds of objectives. One is to understand how this prob...

متن کامل

A local decision test for sparse polynomials

An `-sparse (multivariate) polynomial is a polynomial containing at most `-monomials in its explicit description. We assume that a polynomial is implicitly represented as a black-box: on an input query from the domain, the black-box replies with the evaluation of the polynomial at that input. We provide an efficient, randomized algorithm, that can decide whether a polynomial f : Fq → Fq given a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Math., Alg. and Appl.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014