Successful transgenesis of the parasitic nematode Strongyloides stercoralis requires endogenous non-coding control elements.
نویسندگان
چکیده
Critical investigations into the cellular and molecular biology of parasitic nematodes have been hindered by a lack of modern molecular genetic techniques for these organisms. One such technique is transgenesis. To our knowledge, the findings reported here demonstrate the first heritable DNA transformation and transgene expression in the intestinal parasite Strongyloides stercoralis. When microinjected into the syncitial gonads of free-living S. stercoralis females, a construct fusing the S. stercoralis era-1 promoter, the coding region for green fluorescent protein (gfp) and the S. stercoralis era-1 3' untranslated region was expressed in intestinal cells of normally developing F1 transgenic larvae. The frequency of transformation and GFP expression among F1 larvae was 5.3%. By contrast, expression of several promoter::gfp fusions incorporating only Caenorhabditis elegans regulatory elements was restricted to abortively developing F1 embryos of S. stercoralis. Despite its lack of regulated expression, PCR revealed that one of these C. elegans-based vector constructs, the sur-5::gfp fusion, is incorporated into F1 larval progeny of microinjected female worms and then transmitted to the F2 through F5 generations during two host passages conducted without selection and punctuated by free-living generations reared in culture. Heritable DNA transformation and regulated transgene expression, as demonstrated here for S. stercoralis, constitute the essential components of a practical system for transgenesis in this parasite. This system has the potential to significantly advance the molecular and cellular biological study of S. stercoralis and of parasitic nematodes generally.
منابع مشابه
Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid.
The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for th...
متن کاملMorphogenesis of Strongyloides stercoralis Infective Larvae Requires the DAF-16 Ortholog FKTF-1
Based on metabolic and morphological similarities between infective third-stage larvae of parasitic nematodes and dauer larvae of Caenorhabditis elegans, it is hypothesized that similar genetic mechanisms control the development of these forms. In the parasite Strongyloides stercoralis, FKTF-1 is an ortholog of DAF-16, a forkhead transcription factor that regulates dauer larval development in C...
متن کاملTransgenesis in Strongyloides and related parasitic nematodes: historical perspectives, current functional genomic applications and progress towards gene disruption and editing
Transgenesis for Strongyloides and Parastrongyloides was accomplished in 2006 and is based on techniques derived for Caenorhabditis elegans over two decades earlier. Adaptation of these techniques has been possible because Strongyloides and related parasite genera carry out at least one generation of free-living development, with adult males and females residing in soil contaminated by feces fr...
متن کاملHuman Strongyloidiasis: An Insight in to a Neglected Tropical Parasitic Disease
Strongyloidiasis is an infectious parasitic disease caused by the intestinal nematode Strongyloides stercoralis. This infection is prevalent worldwide except in the Antarctica and with predominance in the warm and humid climates of tropical and sub-tropical regions of the world. Human infection with S stercoralis was first discovered in French soldiers returning from Indochina borders and is ca...
متن کاملpiggyBac
In addition to their natural role in eukaryotic genome evolution, transposons can be powerful tools for functional genomics in diverse taxa. The piggyBac transposon has been applied as such in eukaryotic parasites, both protozoa and helminths, and in several important vector mosquitoes. piggyBac is advantageous for functional genomics because of its ability to transduce a wide range of taxa, it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal for parasitology
دوره 36 6 شماره
صفحات -
تاریخ انتشار 2006