Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment
نویسندگان
چکیده
Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C), nitrogen (N), and phosphorus (P) cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS) is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip), we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon-Weaner's H and reciprocal of Simpson's 1/(1-D)] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT) showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH), transformation of hydroxylamine to nitrite (hao) and ammonification (gdh) genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated with salinity, temperature, and chlorophyll based on canonical correspondence analysis, suggesting a significant influence of hydrologic conditions on water microbial communities. Our data provide new insights into better understanding of the functional potential of microbial communities in the complex estuarine-coastal environmental gradient of the ECS.
منابع مشابه
Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient
Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton communi...
متن کاملInsights into Diversity and Imputed Metabolic Potential of Bacterial Communities in the Continental Shelf of Agatti Island
Marine microbes play a key role and contribute largely to the global biogeochemical cycles. This study aims to explore microbial diversity from one such ecological hotspot, the continental shelf of Agatti Island. Sediment samples from various depths of the continental shelf were analyzed for bacterial diversity using deep sequencing technology along with the culturable approach. Additionally, i...
متن کاملDark Carbon Fixation in the Columbia River’s Estuarine Turbidity Maxima: Molecular Characterization of Red-Type cbbL Genes and Measurement of DIC Uptake Rates in Response to Added Electron Donors
Dark CO2 fixation has been shown to rival the importance of oxygenic photosynthesis in the global carbon cycle, especially in stratified environments, such as salt wedge estuaries. We investigated this process in the Columbia River estuary using a variety of techniques including functional gene cloning of cbbL (the large subunit of form I RuBisCO), quantitative real-time PCR (qPCR) estimations ...
متن کاملAssessment of the Potential of Harnessing Tidal Energy in the Khowr-e Musa Estuary in the Persian Gulf
Today, the widespread use of fossil fuels is caused many problems in the world, which include: Ozone depletion, the increase carbon dioxide in the atmosphere, growing recognition of climate change impacts and decreasing fossil fuel resources. These issues have led to an increased interest in the mass generation of electricity from renewable sources such tidal energy. The Khowr-e Musa Estuary, l...
متن کاملAn Integrated Study to Analyze Soil Microbial Community Structure and Metabolic Potential in Two Forest Types
Soil microbial metabolic potential and ecosystem function have received little attention owing to difficulties in methodology. In this study, we selected natural mature forest and natural secondary forest and analyzed the soil microbial community and metabolic potential combing the high-throughput sequencing and GeoChip technologies. Phylogenetic analysis based on 16S rRNA sequencing showed tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017