Representation and Similarity Evaluation of Symbolic Time Series Data in Uncertain Environments

نویسندگان

  • Ning Xiong
  • Peter Funk
  • Tomas Olsson
چکیده

Coping with time series cases is becoming an important issue in employing case based reasoning (CBR) in many industrial and medical applications. This paper studies the representation and similarity matching of symbolic time series data that are generated from an uncertain (nondeterministic) process over time. We propose a method to convert such (lengthy) time series into a concise form to capture the stochastic and dynamic property of the underlying process. We also suggest several ways to build a similarity model based on the proposed scheme for representation of symbolic time series cases. Hopefully the work in this paper could offer an initial step to contribute to a probabilistic CBR framework tackling both temporal factor and stochastic uncertainty in a unified manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

Enhancing the Symbolic Aggregate Approximation Method Using Updated Lookup Tables

Similarity search in time series data mining is a problem that has attracted increasing attention recently. The high dimensionality and large volume of time series databases make sequential scanning inefficient to tackle this problem. There are many representation techniques that aim at reducing the dimensionality of time series so that the search can be handled faster at a lower dimensional sp...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

Algorithms for Segmenting Time Series

As with most computer science problems, representation of the data is the key to ecient and eective solutions. Piecewise linear representation has been used for the representation of the data. This representation has been used by various researchers to support clustering, classication, indexing and association rule mining of time series data. A variety of algorithms have been proposed to obtain...

متن کامل

Mining linguistic tone patterns with symbolic representation

This paper conceptualizes speech prosody data mining and its potential application in data-driven phonology/phonetics research. We first conceptualize Speech Prosody Mining (SPM) in a time-series data mining framework. Specifically, we propose using efficient symbolic representations for speech prosody time-series similarity computation. We experiment with both symbolic and numeric representati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014