Localizing Non-Retinotopically Moving Objects
نویسندگان
چکیده
How does the brain determine the position of moving objects? It turns out to be rather complex to answer this question when we realize that the brain has to solve the motion correspondence problem in two kinds of reference frames: Retinotopic and non-retinotopic ones. We show that visual objects are mislocalized along a non-retinotopic motion direction. Observers viewed two successive movie frames each consisting of an outlined square and two target elements inside the square. In the non-retinotopic condition the elements as well as the square moved vertically while two bars also centripetally or centrifugally moved. In the retinotopic condition the vertical movement of them was removed from the stimuli. The task of the observers was to judge a relative position of the elements. Consequently, the elements were mislocalized in the direction of both retinotopic and non-retinotopic motion, although the mislocalization was significantly larger in the retinotopic than in the non-retinotopic conditions. The results suggest that non-retinotopic as well as retinotopic motion processing contributes to the determination of perceived positions of moving objects.
منابع مشابه
Statistical Background Modeling Based on Velocity and Orientation of Moving Objects
Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...
متن کاملMoving Stimuli Are Less Effectively Masked Using Traditional Continuous Flash Suppression (CFS) Compared to a Moving Mondrian Mask (MMM): A Test Case for Feature-Selective Suppression and Retinotopic Adaptation
Continuous flash suppression (CFS) is a powerful interocular suppression technique, which is often described as an effective means to reliably suppress stimuli from visual awareness. Suppression through CFS has been assumed to depend upon a reduction in (retinotopically specific) neural adaptation caused by the continual updating of the contents of the visual input to one eye. In this study, we...
متن کاملThe Perceived Position of Moving Objects: Transcranial Magnetic Stimulation of Area MT1 Reduces the Flash-Lag Effect
How does the visual system assign the perceived position of a moving object? This question is surprisingly complex, since sluggish responses of photoreceptors and transmission delays along the visual pathway mean that visual cortex does not have immediate information about a moving object’s position. In the flash-lag effect (FLE), a moving object is perceived ahead of an aligned flash. Psychoph...
متن کاملGoing, going, gone: localizing abrupt offsets of moving objects.
When a moving object abruptly disappears, this profoundly influences its localization by the visual system. In Experiment 1, 2 aligned objects moved across the screen, and 1 of them abruptly disappeared. Observers reported seeing the objects misaligned at the time of the offset, with the continuing object leading. Experiment 2 showed that the perceived forward displacement of the moving object ...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013