Collaboratively Learning Preferences from Ordinal Data
نویسندگان
چکیده
In applications such as recommendation systems and revenue management, it is important to predict preferences on items that have not been seen by a user or predict outcomes of comparisons among those that have never been compared. A popular discrete choice model of multinomial logit model captures the structure of the hidden preferences with a low-rank matrix. In order to predict the preferences, we want to learn the underlying model from noisy observations of the low-rank matrix, collected as revealed preferences in various forms of ordinal data. A natural approach to learn such a model is to solve a convex relaxation of nuclear norm minimization. We present the convex relaxation approach in two contexts of interest: collaborative ranking and bundled choice modeling. In both cases, we show that the convex relaxation is minimax optimal. We prove an upper bound on the resulting error with finite samples, and provide a matching information-theoretic lower bound.
منابع مشابه
Learning various classes of models of lexicographic orderings
We consider the problem of learning a user’s ordinal preferences on multiattribute domains, assuming that the user’s preferences may be modelled as a kind of lexicographic ordering. We introduce a general graphical representation called LP-structures which captures various natural classes of such ordering in which both the order of importance between attributes and the local preferences over ea...
متن کاملLearning Mallows Models with Pairwise Preferences
Learning preference distributions is a key problem in many areas (e.g., recommender systems, IR, social choice). However, many existing methods require restrictive data models for evidence about user preferences. We relax these restrictions by considering as data arbitrary pairwise comparisons—the fundamental building blocks of ordinal rankings. We develop the first algorithms for learning Mall...
متن کاملLearning from Label Preferences
In this paper, we review the framework of learning (from) label preferences, a particular instance of preference learning. Following an introduction to the learning setting, we particularly focus on our own work, which addresses this problem via the learning by pairwise comparison paradigm. From a machine learning point of view, learning by pairwise comparison is especially appealing as it deco...
متن کاملA Preference Optimization Based Unifying Framework for Supervised Learning Problems
Supervised learning is characterized by a broad spectrum of learning problems, often involving structured types of prediction, including classification, ranking-based predictions (label and instance ranking), and (ordinal) regression in its various forms. All these different learning problems are typically addressed by specific algorithmic solutions. In this chapter, we propose a general prefer...
متن کاملRegression Models for Ordinal Data : AMachine Learning
In contrast to the standard machine learning tasks of classi cation and metric regression we investigate the problem of predicting variables of ordinal scale, a setting referred to as ordinal regression. The task of ordinal regression arises frequently in the social sciences and in information retrieval where human preferences play a major role. Also many multi{class problems are really problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015