A New Mesenchymal Stem Cell (MSC) Paradigm: Polarization into a Pro-Inflammatory MSC1 or an Immunosuppressive MSC2 Phenotype
نویسندگان
چکیده
BACKGROUND Our laboratory and others reported that the stimulation of specific Toll-like receptors (TLRs) affects the immune modulating responses of human multipotent mesenchymal stromal cells (hMSCs). Toll-like receptors recognize "danger" signals, and their activation leads to profound cellular and systemic responses that mobilize innate and adaptive host immune cells. The danger signals that trigger TLRs are released following most tissue pathologies. Since danger signals recruit immune cells to sites of injury, we reasoned that hMSCs might be recruited in a similar way. Indeed, we found that hMSCs express several TLRs (e.g., TLR3 and TLR4), and that their migration, invasion, and secretion of immune modulating factors is drastically affected by specific TLR-agonist engagement. In particular, we noted diverse consequences on the hMSCs following stimulation of TLR3 when compared to TLR4 by our low-level, short-term TLR-priming protocol. PRINCIPAL FINDINGS Here we extend our studies on the effect on immune modulation by specific TLR-priming of hMSCs, and based on our findings, propose a new paradigm for hMSCs that takes its cue from the monocyte literature. Specifically, that hMSCs can be polarized by downstream TLR signaling into two homogenously acting phenotypes we classify here as MSC1 and MSC2. This concept came from our observations that TLR4-primed hMSCs, or MSC1, mostly elaborate pro-inflammatory mediators, while TLR3-primed hMSCs, or MSC2, express mostly immunosuppressive ones. Additionally, allogeneic co-cultures of TLR-primed MSCs with peripheral blood mononuclear cells (PBMCs) predictably lead to suppressed T-lymphocyte activation following MSC2 co-culture, and permissive T-lymphocyte activation in co-culture with MSC1. SIGNIFICANCE Our study provides an explanation to some of the conflicting reports on the net effect of TLR stimulation and its downstream consequences on the immune modulating properties of stem cells. We further suggest that MSC polarization provides a convenient way to render these heterogeneous preparations of cells more uniform while introducing a new facet to study, as well as provides an important aspect to consider for the improvement of current stem cell-based therapies.
منابع مشابه
PI3kα and STAT1 Interplay Regulates Human Mesenchymal Stem Cell Immune Polarization.
The immunomodulatory capacity of mesenchymal stem cells (MSCs) is critical for their use in therapeutic applications. MSC response to specific inflammatory cues allows them to switch between a proinflammatory (MSC1) or anti-inflammatory (MSC2) phenotype. Regulatory mechanisms controlling this switch remain to be defined. One characteristic feature of MSC2 is their ability to respond to IFNγ wit...
متن کاملMesenchymal Stem Cell 1 (MSC1)-Based Therapy Attenuates Tumor Growth Whereas MSC2-Treatment Promotes Tumor Growth and Metastasis
BACKGROUND Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs) in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angio...
متن کاملAnti-inflammatory mesenchymal stem cells (MSC2) attenuate symptoms of painful diabetic peripheral neuropathy.
Mesenchymal stem cells (MSCs) are very attractive candidates in cell-based strategies that target inflammatory diseases. Preclinical animal studies and many clinical trials have demonstrated that human MSCs can be safely administered and that they modify the inflammatory process in the targeted injured tissue. Our laboratory developed a novel method that optimizes the anti-inflammatory effects ...
متن کاملMesenchymal Stem Cells: Interactions with Immune Cells and Immunosuppressive-Immunomodulatory Properties
Abstract Background and Objectives Recently, mesenchymal stem cells have attracted much attention in regenerative medicine and cell-based therapies. Mesenchymal stem cells are used in regenerative medicine mainly based on their capacity to differentiate into several cell lineages, low immunogenicity, and in particular their anti-inflammatory and immunosuppressive-immunomodulatory properties. ...
متن کاملP158: Targeting of Microglial M1/M2 Polarization Through Stem Cells Therapy as A Promising Candidate in Traumatic Brain Injury (TBI)
Traumatic brain injury is a serious global health problem with irreversible high morbidity and disability and Because of its unknown pathophysiological mechanisms, efficient therapeutic approaches to improve the poor outcome and long-term impairment of behavioral function are still remains lacking. The microglial cells are the resident macrophage cells of the brain and have M1/M2 phenotype, for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010