A Machine Learning Approach to Automatic Production of Compiler Heuristics

نویسندگان

  • Antoine Monsifrot
  • François Bodin
  • Rene Quiniou
چکیده

Achieving high performance on modern processors heavily relies on the compiler optimizations to exploit the microprocessor architecture. The efficiency of optimization directly depends on the compiler heuristics. These heuristics must be target-specific and each new processor generation requires heuristics reengineering. In this paper, we address the automatic generation of optimization heuristics for a target processor by machine learning. We evaluate the potential of this method on an always legal and simple transformation: loop unrolling. Though simple to implement, this transformation may have strong effects on program execution (good or bad). However deciding to perform the transformation or not is difficult since many interacting parameters must be taken into account. So we propose a machine learning approach. We try to answer the following questions: is it possible to devise a learning process that captures the relevant parameters involved in loop unrolling performance? Does the Machine Learning Based Heuristics achieve better performance than existing ones?

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect

This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...

متن کامل

Automatic Selection of Machine Learning Models for Compiler Heuristic Generation

Machine learning has shown its capabilities for an automatic generation of heuristics used by optimizing compilers. The advantages of these heuristics are that they can be easily adopted to a new environment and in some cases outperform hand-crafted compiler optimizations. However, this approach shifts the effort from manual heuristic tuning to the model selection problem of machine learning – ...

متن کامل

Automatic Selection of Machine Learning Models for WCET-aware Compiler Heuristic Generation

Machine learning has shown its capabilities for an automatic generation of heuristics used by optimizing compilers. The advantages of these heuristics are that they can be easily adopted to a new environment and in some cases outperform hand-crafted compiler optimizations. However, this approach shifts the effort from manual heuristic tuning to the model selection problem of machine learning – ...

متن کامل

Automatic WCET Reduction by Machine Learning Based Heuristics for Function Inlining

The application of machine learning techniques in compiler frameworks has become a challenging research area. Learning algorithms are exploited for an automatic generation of optimization heuristics which often outperform hand-crafted models. Moreover, these automatic approaches can effectively tune the compilers’ heuristics after larger changes in the optimization sequence or they can be lever...

متن کامل

A New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering

This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002