Avoiding order reduction when integrating nonlinear Schrödinger equation with Strang method

نویسندگان

  • B. Cano
  • N. Reguera
چکیده

In this paper a technique is suggested to avoid order reduction when using Strang method to integrate nonlinear Schrödinger equation subject to time-dependent Dirichlet boundary conditions. The computational cost of this technique is negligible compared to that of the method itself, at least when the timestepsize is fixed. Moreover, a thorough error analysis is given as well as a modification of the technique which allows to conserve the symmetry of the method while retaining its second order.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations

In this work, the error behavior of operator splitting methods is analyzed for highly-oscillatory differential equations. The scope of applications includes time-dependent nonlinear Schrödinger equations, where the evolution operator associated with the principal linear part is highly-oscillatory and periodic in time. In a first step, a known convergence result for the second-order Strang split...

متن کامل

Avoiding order reduction when integrating diffusion-reaction boundary value problems with exponential splitting methods

In this paper, we suggest a technique to avoid order reduction in time when integrating reaction-diffusion boundary value problems under non-homogeneous boundary conditions with exponential splitting methods. More precisely, we consider Lie-Trotter and Strang splitting methods and Dirichlet, Neumann and Robin boundary conditions. Beginning from an abstract framework in Banach spaces, a thorough...

متن کامل

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

متن کامل

Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation

In this paper, we consider the nonlinear Schrödinger equation ut + i∆u− F (u) = 0 in two dimensions. We show, by an operator-theoretic proof, that the well-known Lie and Strang formulae (which are splitting methods) are approximations of the exact solution of order 1 and 2 in time.

متن کامل

On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations

We give an error analysis of Strang-type splitting integrators for nonlinear Schrödinger equations. For Schrödinger-Poisson equations with an H4-regular solution, a first-order error bound in the H1 norm is shown and used to derive a second-order error bound in the L2 norm. For the cubic Schrödinger equation with an H4-regular solution, first-order convergence in the H2 norm is used to obtain s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 316  شماره 

صفحات  -

تاریخ انتشار 2017