Performance Analysis of Single Source Shortest Path Algorithm over Multiple GPUs in a Network of Workstations using OpenCL and MPI

نویسندگان

  • Krishnahari Thouti
  • S. R. Sathe
چکیده

Graphics Processing Units (GPUs) are being heavily used in various graphics and non-graphics applications. Many practical problems in computing can be represented as graphs to arrive at a particular solution. These graphs contains very large number, up to millions pairs of vertices and edges. In this paper, we present performance analysis of Dijkstra’s single source shortest path algorithm over multiple GPU devices in a single machine as well as over a network of workstations using OpenCL and MPI. Experimental results prove that parallel execution of Dijkstra’s algorithm has good performance when algorithm is run over multi-GPU devices in a single workstation as opposed to multi-GPU devices over a network of workstations. For our experimentation, we have used workstation having Intel Xeon 6-core Processor; supporting hyper-threading and a total of 24 threads with NVIDIA Quadro FX 3800 GPU device. The two GPU devices are connected by SLI Bridge. Overall, on average we achieved performance improvement up to an order of 10-15x. General Terms Parallel Computing, Parallel Algorithms

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets

A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...

متن کامل

In-place Recursive Approach for All-pairs Shortest Paths Problem Using Opencl

The all-pairs shortest paths (APSP) problem finds the shortest path distances between all pairs of vertices,and is one of the most fundamental graph problems. In this paper, a parallel recursive partitioning approach to APSP problem using Open Computing Language (OpenCL) for directed and dense graphs with no negative cyclesbased on R-Kleene algorithm, is presented, which recursively partitions ...

متن کامل

A Fine Tuned Hybrid Implementation for Solving Shortest Path Problems using Bellman Ford

In this paper a hybrid implementation for Bellman-Ford to solve shortest path problems is proposed using OpenCL. Here first parallel implementation for Bellman-Ford for single source shortest path (SSSP) problem and all pair shortest path (APSP) are analyzed on CPU and GPU and based on this analysis work is divided among CPU and GPU and hybrid implementation is done. As proper resource utilizat...

متن کامل

General-purpose computation on GPUs for high performance cloud computing

Cloud computing is offering new approaches for High Performance Computing (HPC) as it provides dynamically scalable resources as a service over the Internet. In addition, General-Purpose computation on Graphical Processing Units (GPGPU) has gained much attention from scientific computing in multiple domains, thus becoming an important programming model in HPC. Compute Unified Device Architectur...

متن کامل

Conversion of Network Problem with Transfer Nodes, and Condition of Supplying the Demand of any Sink from the Particular Source to the Transportation Problem

In this article we present an algorithm for converting a network problem with several sources and several sinks including several transfer nodes and condition of supplying the demand of any sink from a particular source to the transportation problem.  Towards this end, and considering the very special structure of transportation algorithm, after implementing the shortest path algorithm or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013