Tidal turbine array optimisation using the adjoint approach

نویسندگان

  • Simon W. Funke
  • Patrick E. Farrell
  • Matthew D. Piggott
چکیده

Oceanic tides have the potential to yield a vast amount of renewable energy. Tidal stream generators are one of the key technologies for extracting and harnessing this potential. In order to extract an economically useful amount of power, hundreds of tidal turbines must typically be deployed in an array. This naturally leads to the question of how these turbines should be configured to extract the maximum possible power: the positioning and the individual tuning of the turbines could significantly influence the extracted power, and hence is of major economic interest. However, manual optimisation is difficult due to legal site constraints, nonlinear interactions of the turbine wakes, and the cubic dependence of the power on the flow speed. The novel contribution of this paper is the formulation of this problem as an optimisation problem constrained by a physical model, which is then solved using an efficient gradient-based optimisation algorithm. In each optimisation iteration, a two-dimensional finite element shallow water model predicts the flow and the performance of the current array configuration. The gradient of the power extracted with respect to the turbine positions and their tuning parameters is then computed in a fraction of the time taken for a flow solution by solving the associated adjoint equations. These equations propagate causality backwards through the computation, from the power extracted back to the turbine positions and the tuning parameters. This yields the gradient at a cost almost independent of the number of turbines, which is crucial for any practical application. The utility of the approach is demonstrated by optimising turbine arrays in four idealised scenarios and a more realistic case with up to 256 turbines in the Inner Sound of the Pentland Firth, Scotland.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the validity of tidal turbine array configurations obtained from steady-state adjoint optimisation

Extracting the optimal amount of power from an array of tidal turbines requires an intricate understanding of tidal dynamics and the effects of turbine placement on the local and regional scale flow. Numerical models have contributed significantly towards this understanding, and more recently, adjoint-based modelling has been employed to optimise the positioning of the turbines in an array in a...

متن کامل

Integration of cost modelling within the micro-siting design optimisation of tidal turbine arrays

The location of individual turbines within a tidal current turbine array e micro-siting e can have a significant impact on the power that the array may extract from the flow. Due to the infancy of the industry and the challenges of exploiting the resource, the economic costs of realising industrial scale tidal current energy projects are significant and should be considered as one of the key dr...

متن کامل

Hybrid global-local optimisation algorithms for the layout design of tidal turbine arrays

Tidal stream power generation represents a promising source of renewable energy. In order to extract an economically useful amount of power, tens to hundreds of tidal turbines need to be placed within an array. The layout of these turbines can have a significant impact on the power extracted and hence on the viability of the site. Funke et al. [15] formulated the question of the best turbine la...

متن کامل

Design optimisation and resource assessment for tidal-stream renewable energy farms using a new continuous turbine approach

This paper presents a new approach for optimising the design of tidal stream turbine farms. In this approach, the turbine farm is represented by a turbine density function that specifies the number of turbines per unit area and an associated continuous locally-enhanced bottom friction field. The farm design question is formulated as a mathematical optimisation problem constrained by the shallow...

متن کامل

A hierarchy of approaches for the optimal design of tidal turbine farms

From conception to construction, the process by which tidal turbine farms are scoped and designed (and even optimised – which is the focus here) is multi-layered. The industrial designer requires tools of varying fidelities working on multiple scales, depending on the task at hand. In this paper a hierarchy of modelling approaches is proposed and some examples demonstrated. For site-scoping and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1304.1768  شماره 

صفحات  -

تاریخ انتشار 2013