Complex interactions between spatial, orientation, and motion cues for biological motion perception across visual space.

نویسندگان

  • Steven M Thurman
  • Hongjing Lu
چکیده

Human observers are adept at perceiving complex actions in point-light biological motion displays that represent the human form with a sparse array of moving points. However, the neural computations supporting action perception remain unclear, particularly with regards to central versus peripheral vision. We created novel action stimuli comprised of Gabor patches to examine the contributions of various competing visual cues to action perception across the visual field. The Gabor action stimulus made it possible to pin down form processing at two levels: (a) local information about limb angle represented by Gabor orientations and (b) global body structure signaled by the spatial arrangement of Gabor patches. This stimulus also introduced two types of motion signals: (a) local velocity represented by Gabor drifting motion and (b) joint motion trajectories signaled by position changes of Gabor disks over time. In central vision, the computational analysis of global cues based on the spatial arrangement of joints and joint trajectories dominated processing, with minimal influence of local drifting motion and orientation cues. In the periphery we found that local drifting motion and orientation cues interacted with spatial cues in sophisticated ways depending on the particular discrimination task and location within the visual field to influence action perception. This dissociation was evident in several experiments showing phantom action percepts in the periphery that contradicted central vision. Our findings suggest a highly flexible and adaptive system for processing visual cues at multiple levels for biological motion and action perception.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Audio–visual interactions for motion perception in depth modulate activity in visual area V3A

Multisensory signals can enhance the spatial perception of objects and events in the environment. Changes of visual size and auditory intensity provide us with the main cues about motion direction in depth. However, frequency changes in audition and binocular disparity in vision also contribute to the perception of motion in depth. Here, we presented subjects with several combinations of audito...

متن کامل

The perception of biological motion across apertures.

To understand the visual analysis of biological motion, subjects viewed dynamic, stick figure renditions of a walker, car, or scissors through apertures. As a result of the aperture problem, the motion of each visible edge was ambiguous. Subjects readily identified the human figure but were unable to identify the car or scissors through invisible apertures. Recognition was orientation specific ...

متن کامل

Temporoparietal encoding of space and time during vestibular-guided orientation

When we walk in our environment, we readily determine our travelled distance and location using visual cues. In the dark, estimating travelled distance uses a combination of somatosensory and vestibular (i.e., inertial) cues. The observed inability of patients with complete peripheral vestibular failure to update their angular travelled distance during active or passive turns in the dark implie...

متن کامل

Bayesian integration of position and orientation cues in perception of biological and non-biological forms

Visual form analysis is fundamental to shape perception and likely plays a central role in perception of more complex dynamic shapes, such as moving objects or biological motion. Two primary form-based cues serve to represent the overall shape of an object: the spatial position and the orientation of locations along the boundary of the object. However, it is unclear how the visual system integr...

متن کامل

A comparison of form processing involved in the perception of biological and nonbiological movements

Although there is evidence for specialization in the human brain for processing biological motion per se, few studies have directly examined the specialization of form processing in biological motion perception. The current study was designed to systematically compare form processing in perception of biological (human walkers) to nonbiological (rotating squares) stimuli. Dynamic form-based stim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of vision

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2013