Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster.
نویسندگان
چکیده
Hydrogenases are enzymes that catalyze the oxidation of H2 as well as the reduction of protons to form H2. The active site of [FeFe] hydrogenase is referred to as the "H-cluster" and consists of a "classical" [4Fe-4S] cluster connected via a bridging cysteine thiol group to a unique [2Fe]H sub-cluster, containing CN(-) and CO ligands as well as a bidentate azadithiolate ligand. It has been recently shown that the biomimetic [Fe2(adt)(CO)4(CN)2](2-) (adt(2-) = azadithiolate) complex resembling the diiron sub-cluster can be inserted in vitro into the apo-protein of [FeFe] hydrogenase, which contains only the [4Fe-4S] part of the H-cluster, resulting in a fully active enzyme. This synthetic tool allows convenient incorporation of a variety of diiron mimics, thus generating hydrogenases with artificial active sites. [FeFe] hydrogenase from Chlamydomonas reinhardtii maturated with the biomimetic complex [Fe2(pdt)(CO)4(CN)2](2-) (pdt(2-) = propanedithiolate), in which the bridging adt(2-) ligand is replaced by pdt(2-), can be stabilized in a state strongly resembling the active oxidized (Hox) state of the native protein. This state is EPR active and the signal originates from the mixed valence Fe(I)Fe(II) state of the diiron sub-cluster. Taking advantage of the variant with (15)N and (13)C isotope labeled CN(-) ligands we performed HYSCORE and ENDOR studies on this hybrid protein. The (13)C hyperfine couplings originating from both CN(-) ligands were determined and assigned. Only the (15)N coupling from the CN(-) ligand bound to the terminal iron was observed. Detailed orientation selective ENDOR and HYSCORE experiments at multiple field positions enabled the extraction of accurate data for the relative orientations of the nitrogen and carbon hyperfine tensors. These data are consistent with the crystal structure assuming a g-tensor orientation following the local symmetry of the binuclear sub-cluster.
منابع مشابه
Spectroscopic Investigations of [FeFe] Hydrogenase Maturated with [(57)Fe2(adt)(CN)2(CO)4](2-).
The preparation and spectroscopic characterization of a CO-inhibited [FeFe] hydrogenase with a selectively (57)Fe-labeled binuclear subsite is described. The precursor [(57)Fe2(adt)(CN)2(CO)4](2-) was synthesized from the (57)Fe metal, S8, CO, (NEt4)CN, NH4Cl, and CH2O. (Et4N)2[(57)Fe2(adt)(CN)2(CO)4] was then used for the maturation of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardti...
متن کاملFunctional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system.
Maturation of [FeFe] hydrogenases requires the biosynthesis and insertion of the catalytic iron-sulfur cluster, the H cluster. Two radical S-adenosylmethionine (SAM) proteins proposed to function in H cluster biosynthesis, HydEF and HydG, were recently identified in the hydEF-1 mutant of the green alga Chlamydomonas reinhardtii (M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert,...
متن کاملSpectroelectrochemical characterization of the active site of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii.
Hydrogenases catalyze the reversible oxidation of molecular hydrogen. The active site of the [FeFe] hydrogenases (H-cluster) contains a catalytically active binuclear subcluster ([2Fe](H)) connected to a "cubane" [4Fe4S](H) subcluster. Here we present an IR spectroelectrochemical study of the [FeFe] hydrogenase HydA1 isolated from the green alga Chlamydomonas reinhardtii. The enzyme shows IR ba...
متن کامل1H NMR Spectroscopy of [FeFe] Hydrogenase: Insight into the Electronic Structure of the Active Site
The [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii has been studied using 1H NMR spectroscopy identifying the paramagnetically shifted 1H resonances associated with both the [4Fe-4S]H and the [2Fe]H subclusters of the active site "H-cluster". The signal pattern of the unmaturated HydA1 containing only [4Fe-4S]H is reminiscent of bacterial-type ferredoxins. The spectra of maturated HydA...
متن کاملThe [FeFe]-hydrogenase maturase HydF from Clostridium acetobutylicum contains a CO and CN- ligated iron cofactor.
Biosynthesis of the [FeFe] hydrogenases active site (H-cluster) requires three maturation factors whose respective roles are not understood yet. The clostridial maturation enzymes (CaHydE, CaHydF and CaHydG) were homologously overexpressed in their native host Clostridium acetobutylicum. CaHydF was able to activate Chlamydomonas reinhardtii [FeFe] hydrogenase apoprotein (CrHydA1(apo)) to almost...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 7 شماره
صفحات -
تاریخ انتشار 2015